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ABSTRACT
Accurately predicting the popularity of micro-videos is crucial for
real-world applications such as recommender systems and identify-
ing viral marketing opportunities. Existing methods often focus on
limited cross-modal information within individual micro-videos,
overlooking the potential advantages of exploiting vast reposi-
tory of past videos. We present MMRA, a multi-modal retrieval-
augmented popularity prediction model that enhances prediction
accuracy using relevant retrieved information. MMRAfirst retrieves
relevant instances from amulti-modal memory bank, aligning video
and text through transformation mechanisms involving a vision
model and a text-based retriever. Additionally, a multi-modal in-
teraction network is carefully designed to jointly capture cross-
modal correlations within the target video and extract informative
knowledge through retrieved instances, ultimately enhancing the
prediction. Extensive experiments conducted on the real-world
micro-video dataset demonstrate the superiority of MMRA when
compared to state-of-the-art models. The code and data are avail-
able at https://github.com/ICDM-UESTC/MMRA.

CCS CONCEPTS
• Information systems→ Retrieval tasks and goals; • Social
and professional topics→ User characteristics.
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1 INTRODUCTION
Micro-video platforms like TikTok and Instagram are experiencing a
surge in popularity, attracting the attention of millions of users who
actively create, share, and propagate micro-videos. The burgeoning
interest in these platforms has given rise to a vital field known as
micro-video popularity prediction (MVPP). The primary objective of
MVPP is to predict the future viewership or engagement levels of a
specific micro-video over a defined time frame. This area of research
has gained significant attention from scholars and experts alike, due
to its potential benefit in a wide spectrum of real-world applications,
such as advertising [16], social link prediction/recommendation
[3, 25, 28, 33, 35, 37], and misinformation detection [2, 9, 31].
Prior Work. Researchers have investigated MVPP using two dis-
tinct categories of methods: (1) Feature-engineering methods [13, 15]
involve the creation of hand-crafted micro-video features with the
explicit goal of predicting popularity. These functions are designed
using carefully constructed functions [18, 24, 29]. However, it is
important to note that these methods heavily rely on expert knowl-
edge and the availability of high-quality features. This reliance
on expertise and specific feature quality can limit the scalability
of such models. (2) Deep learning-based methods [6, 32, 34] have
leveraged the expressive capabilities of various neural networks
to model multi-modal data effectively. For example, researchers
usually integrate visual models like Resnet [8] and ViT [30], along
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with textual models such as BERT [12] and AnglE [20], to capture
and learn cross-modal correlations for popularity prediction.

Although significant progress has been made in MVPP, prior
research has primarily focused on exploiting limited cross-modal
correlations within individual micro-videos. This approach has of-
ten overlooked rich collaborative information that exists across
different micro-videos. For example, the distribution of followers
varies among source users on micro-video platforms, leading to
significant variations in social feedback for identical micro-videos,
depending on the viewing user group [36]. Hence, solely modeling
semantic information within an individual video falls short of pro-
viding a comprehensive solution to the MVPP task. This limitation
has spurred our motivation to enhance the knowledge retrieval
stage, allowing the model to explicitly access relevant micro-videos
stored in the memory bank to assist popularity prediction of the
target video. This idea draws inspiration from the way human spe-
cialize to achieve better generalization. Instead of memorizing all
concepts, humans acquire specialized skills and retrieve relevant
knowledge when required [10].
Challenge. Enhancing MVPP by leveraging retrieval-augmented
knowledge poses significant challenges, primarily due to two ob-
stacles. First, the complexity arises from the need to assess the
similarity between the target video and instances stored in the
memory bank. This necessitates evaluating both visual and textual
similarities to accurately identify relevant instances. Regrettably,
existing retrieval methods primarily encode and retrieve single-
modal information [17, 21] from the memory bank, failing to make
use of valuable resource of multi-modal knowledge. Second, the
abundance of noise within micro-video data further compounds
the challenge. The noise originates from the inherent variability
and irregularity of user behaviors on these platforms. Instances of
inconsistency between textual descriptions and micro-video con-
tent are commonplace, rendering the direct extraction of relevant
instances from the memory bank a daunting task.
Present work. We propose MMRA, a pioneering Multi-Modal
Retrieval-Augmented micro-video popularity prediction framework
for enhancing MVPP. Technically, our approach reimagines the
popularity prediction process as a "retrieve-and-predict" paradigm.
More specifically, we introduce a multi-modal memory bank that
encodes both video frames and textual descriptions with a set of
reference <frames, text> pairs. During the retrieval phase, we ad-
dress challenges posed by noisy video-text pairs and the inherent
cross-modal gap by employing a visual captioner (e.g., BLIP [19]) to
generate synthetic captions based on video frames. These synthetic
captions, in conjunction with the textual descriptions of the videos,
serve as text prompts for retrieving the most relevant <frames, text>
pairs from the memory bank. Next, this retrieved knowledge is in-
corporated as supplementary model inputs to guide the popularity
prediction for the target video. In the prediction stage, we devised
a multi-modal interaction network to capture both multi-modal
feature interactions within the target videos and inter-sample fea-
ture interactions among relevant instances. Extensive experiments
conducted on real-world micro-video dataset demonstrated the
superiority of our MMRA over existing state-of-the-art baselines.

2 METHODOLOGY
Problem Definition. Let V = {V1, · · · ,V𝑁 } denotes the set of
micro-videos available on online video platforms, where 𝑁 is the
number of micro-videos. Each video V𝑖 consists of 𝐾 modality
contentM𝑖 = {𝑚1, · · · ,𝑚𝐾 }, where 𝐾 ≥ 2. The goal of MVPP aims
to predict the cumulative views𝑦𝑖 of a given micro-videoV𝑖 during
a specific future period via utilizing all modalities that significantly
contribute to the prediction of its popularity trend after its release.
An overview of our proposed MMRA is shown in Figure 1.
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Figure 1: Overview of our proposed framework MMRA.

2.1 Micro-Video Retrieval
To retrieve relevant instances that provide useful guidance for pop-
ularity prediction of the target video, we carefully design the text
prompts. Specifically, we have developed a video-to-text transfor-
mation process that leverages advanced vision models to gener-
ate captions for videos. Subsequently, we merge these synthetic
video captions with the original textual descriptions associated
with the video. This combined text serves as the text prompt for
large language models (LLMs), which encode it into a retrieval
vector representing the corresponding videos. With such a design,
we successfully align the visual and textual modalities of micro-
videos while addressing potential inconsistencies between textual
descriptions and the actual video content.

2.1.1 Retrieval Vector Generation. The micro-video memory bank
B is defined as a set of reference <frames, text> pairs, where video
frames and textual descriptions are encoded. To use this resource,
for a micro-videoV𝑖 , we first introduce a visual captioner (i.e., BLIP
[19]) to excavate the video content and generate descriptive image
captions for its corresponding frames, i.e., C𝑖 = [𝑐𝑖1, · · · , 𝑐

𝑖
𝐿
], where

𝐿 denotes the number of frames for the videoV𝑖 . Then, we combine
synthetic caption 𝐶𝑖 with the original textual descriptions T𝑖 as a
text prompt P𝑖 = 𝐶𝑖 ⊕ T𝑖 . ⊕ denotes the concatenation operation.
Finally, we feed this text prompt P𝑖 into a pre-trained semantic
extraction model (i.e., UAE-Large [20]) and generate the retrieval
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vector 𝒓𝑖 representing the corresponding video V𝑖 . Analogously,
each rawmicro-video in thememory bank obtains its corresponding
retrieval vector via the same generation process.

2.1.2 Retriever. The retriever is to search Top-𝑘 nearest videos
from the memory bank by calculating the similarity scores between
the target video and instances in the memory bank. Specifically, the
retriever takes a query V𝑞 as input and retrieves from the memory
B of frame-text pairs. Then, we use the maximum inner product
search (MIPS [7]) over all memory candidates 𝑏 ∈ B to find Top-𝑘
nearest neighbors Top𝐾 (B|V𝑞) = [𝑏𝑞1 , · · · , 𝑏

𝑞

𝑘
] based on similarity

scores S = [𝑠𝑞,𝑏1 , · · · , 𝑠𝑞,𝑏𝑘 ]. This process can be defined as follows:

Top𝐾 (B | V𝑞) = argmax
𝑏∈B

𝒓𝑞 · 𝒓𝑏 (1)

2.2 Multi-modal Interactions & Prediction
2.2.1 Multi-modal Feature Extraction. Given a micro-video V𝑖 , we
sample video frames with a temporal stride of 𝜏 and feed these
frames into a pre-trained visual model (i.e., vision transformer
(ViT) [30]) to extract visual representations E𝑣

𝑖
∈ R𝑇

𝑜×𝑑𝑣 , where
𝑇𝑜 = ⌊𝑇𝜏 ⌋ and 𝑑𝑣 denote the dimensions of visual features. Next,
the generated frame features E𝑣 are passed through a linear layer
𝑾𝑣 ∈ R𝑑𝑣×𝑑 equipped with the ReLU activation function, creating
vision input token X𝑣 ∈ R𝑇

𝑜×𝑑 : X𝑣
𝑖
= ReLU(E𝑣

𝑖
𝑾𝑣). Moreover,

for textual content T𝑖 , we feed the textual descriptions into a pre-
trained language model (i.e., AnglE [20]) and obtain a sequence of
word embeddings E𝑡

𝑖
∈ R𝑛×𝑑𝑡 , where 𝑑𝑡 denotes the embedding

dimension and 𝑛 is the length of words in the textual descriptions.
Then the word embeddings E𝑡

𝑖
are passed through a linear layer

𝑾𝑡 ∈ R𝑑𝑡×𝑑 , generating textual input token X𝑡 ∈ R𝑛×𝑑 : X𝑡
𝑖
=

ReLU(E𝑡
𝑖
𝑾𝑡 ). Analogously, visual and textual representations of

relevant instances are generated by the same process.

2.2.2 Cross-modal Bipolar Interaction. Aligning visual and textual
modalities becomes challenging due to the presence of inconsistent
information between textual descriptions and video content in real-
world micro-videos. Inspired by the cross-attention mechanisms
[4, 11, 27], we introduce a bipolar attention mechanism to construct
a cross-modal bipolar interaction network, consisting of a positive
attention and a negative attention, for addressing this issue. Specif-
ically, the positive attention aims to identify the most consistent
features across different modalities, while the negative attention is
used to discriminate inconsistent or contradictory information.

In the positive attention, the most similar features between
modalities can be calculated by the cross-modal attention vectors.
Formally, given a micro-video V𝑖 , the visually guided positive tex-
tual features 𝑻 P

𝑖
can be computed as follows:

𝑻 P
𝑖 = ATTP

(
X𝑣𝑖𝑾

𝑄

P ,X
𝑡
𝑖𝑾

𝐾
P ,X

𝑡
𝑖𝑾

𝑉
P

)
= Softmax

(
𝛼
𝑸𝑲𝑇
√
𝑑

)
𝑽 , (2)

where 𝒁𝑐𝑾
𝑄

P ,𝒁𝑐𝑾
𝐾
P ,𝒁𝑐𝑾

𝑉
P denote the query, key, and value, re-

spectively.W𝑄

P ,W
𝐾
P ,W

𝑉
P ∈ R𝑑×𝑑 denote the query, key, and value

projection matrices, respectively. 𝛼 is a adjustable parameter to
control the balance between positive and negative attention pro-
portions. Analogously, the textually guided positive visual features
VP
𝑖

can be obtained through the same process.

During the negative attention, it focuses on extracting the incon-
sistent modal information across distinct modalities. Specifically,
the negative attention scores can be calculated by the scaled dot-
product attention [27] with a negative constant before applying
Softmax, which can be summarized as follows:

𝑻N
𝑖 = ATTN

(
X𝑣𝑖𝑾

𝑄

N ,X
𝑡
𝑖𝑾

𝐾
N ,X

𝑡
𝑖𝑾

𝑉
N

)
= Softmax

(
𝛽
𝑸𝑲𝑇
√
𝑑

)
𝑽 , (3)

where 𝛽 = −(1 − 𝛼). 𝑻N
𝑖

represents the visually guided negative
textual features.W𝑄

N ,W
𝐾
N ,W

𝑉
N denote the query, key, and value

projection matrices, respectively. Analogously, the textually guided
negative visual features VN

𝑖
is generated via the same process.

Inspired by the findings in [5] that the FFN layer learns
task-specific information, we propose to incorporate visual hid-
den states into textual hidden states to generate a compre-
hensive textual modal representation 𝑻̃𝑖 in FFN layers, which
modify the calculation of the FFN process as follows: 𝑻̃𝑖 =

ReLU
(
X𝑡
𝑖
+
(
𝑽 P
𝑖

⊕ 𝑽N
𝑖

)
𝑾1

)
𝑾2, where ⊕ denotes the concatena-

tion operation. 𝑾1 ∈ R2𝑑×𝑑 ,𝑾2 ∈ R𝑑×𝑑 represent the learnable
weights. Moreover, the comprehensive visual modal features 𝑽̃𝑖 are
generated in the same way. Finally, we exploit expressive represen-
tations 𝑽𝑖 , 𝑻𝑖 ∈ R1×𝑑 from the sequences of fused features via the
attentive pooling strategy [26].

2.2.3 Retrieval Interaction Enhancement. To capture meaningful
knowledge from retrieved relevant instances, we explore retrieved
feature- and label-level knowledge for enhancing MVPP. Specifi-
cally, we firstly utilize the aggregation function to generate compre-
hensive representations of 𝑘 relevant instances from the memory
bank. For the aggregation function, we use attention mechanism,
where the attention score is computed based on normalized sim-
ilarity scores in the retrieval process. The underlying intuition
behind this idea is: instances with higher similarity scores are more
relevant. The similarity scores indicate the importance of the corre-
sponding relevant instance for the target micro-video. Specifically,
given a micro-videoV𝑖 and retrieved instances B𝑟

𝑖
= [𝑏𝑖1, · · · , 𝑏

𝑖
𝑘
],

the aggregation process of retrieved visual representations X𝑟,𝑣
𝑖

can
be summarized as follows:

𝛼𝑖,𝑏 𝑗 =
𝑒𝑥𝑝 (𝑠𝑖,𝑏 𝑗 )∑𝑘
𝑗=1 𝑒𝑥𝑝 (𝑠𝑖,𝑏 𝑗 )

, X𝑟,𝑣
𝑖

=

𝑘∑︁
𝑗=1

𝛼𝑖,𝑏 𝑗X
𝑣
𝑏 𝑗
. (4)

Analogously, retrieved textual representations 𝑿𝑟,𝑡
𝑖

can be ob-
tained in the same process. After feeding the cross-modal bipolar
interaction network, we can obtain expressive aggregated multi-
modal representations, i.e., 𝑽𝑟

𝑖
and 𝑻𝑟

𝑖
. For popularity trends of

retrieved instances, we encode the label information via a linear
layer and then aggregate label information of relevant instances via
the aggregation function, creating the aggregated label represen-
tations L𝑟

𝑖
. Finally, MMRA interacts all the features for theV𝑖 for

modeling cross-sample interactions. Thus the feature interactions
are constructed as: I = [inter(𝑽𝑖 , 𝑽𝑟𝑖 ), · · · , inter(𝑻𝑖 , L

𝑟
𝑖
)], where

inter(·) denotes the inner product [23].

2.2.4 Prediction Network. For the micro-videoV𝑖 , the output layer
is fed with the concatenated vector of the former components
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as: H = concat( [𝑽𝑖 , 𝑻𝑖 , 𝑽𝑟𝑖 , 𝑻
𝑟
𝑖
, L𝑟
𝑖
,I]). The output layer is multi-

layer perceptrons (MLPs) with one final output unit to predict the
popularity of the target video 𝑦𝑖 . During training, we use the mean
square error (MSE) as the loss function.

3 EXPERIMENTS

Table 1: Statistics of dataset.
Dataset # Video # User # Train # Val # Test V T

MicroLens 19,738 100,000 15,790 1,974 1,974 768 768

Dataset. To evaluate the effectiveness of MMRA, we conduct ex-
periments on the publicly available micro-video dataset: MicroLens
[22]. Its descriptive statistics is summarized in Table 1. V and T
represent the dimension of visual and textual features, respectively.
MicroLens [22] consists of 19,738 unique micro-videos viewed by
100,000 users from various online video platforms.
Baselines. To evaluate the model superiority, we conduct exper-
iments with seven competitive baselines, which can be grouped
into two categories: (1) Feature-engineering methods: SVR [13] and
HyFea [15]. (2) Deep-learning methods: CLSTM [6], TMALL [1],
MASSL [34], CBAN [4] and HMMVED [32].
Metrics & Parameter Settings. For experimental results, we run
each model on MicroLens dataset five times, and report the mean
values. During training, model parameters are updated by Adam
optimizer [14] and the learning rate is set to 0.0001. We averagely
extract 10 key frames of micro-videos on MicroLens. 𝛼 is set to
0.6. As for baselines, we employ the parameter settings specified in
original papers. We utilize three widely used metrics to evaluate
model performance: normalized mean square error (nMSE), mean
absolute error (MAE) and Spearman’s Rank Correlation (SRC).
Performance Comparison. The overall performance of
MMRA and baselines are reported in Table 2. The best results are
in bold font and the second underlined. The experimental result
indicates that our MMRA consistently outperforms all baselines on
MicroLens dataset, demonstrating its superiority. These results ver-
ify the effectiveness of constructing a retrieval-augmented pipeline
for enhancing MVPP. Specifically, retrieving relevant instances
from the memory bank via text prompting enables MMRA to better
obtain meaningful knowledge. The interaction network can guide
prediction via extracting expressive representations and useful
popularity information through retrieved instances.
Ablation Study.We analyze how MMRA benefits from each key
component. Experimental results are reported in Table 3. (1) The
effectiveness of retrieval. We remove the retrieval module (w/o RE)
and only utilize multi-modal features for prediction. We observe
that removing the retrieval module leads to large performance
degradation. It verifies the effectiveness of retrieval-augmented
strategy. (2) The effectiveness of multi-modal interactions. We design
several variant models without the negative attention (w/o Neg),
and the positive attention (w/o Pos). Experimental results show
that removing either component leads to performance degradation,
demonstrating that all components in MMRA are effective and
necessary. (3) The effectiveness of modal content. We design various
variants without the visual modality (w/o V) or the textual modality
(w/o T). These results indicate that multi-modal content is beneficial
for the final popularity prediction.

Table 2: Performance comparison. Lower values of nMSE and
MAE, and higher values of SRC, indicate better performance.

Model MicroLens
Metrics nMSE MAE SRC
SVR 0.8132 1.2176 0.4288
HyFea 0.8106 1.2321 0.4345
CLSTM 0.7966 1.2117 0.4573
TMALL 0.9373 1.2990 0.3817
MASSL 1.0797 1.4136 0.3875
CBAN 0.7727 1.1900 0.4746
HMMVED 0.8632 1.2524 0.3716
MMRA 0.7530 1.1787 0.4900

Table 3: Ablation study on key components of MMRA.
Dataset MicroLens

Module Variant nMSE MAE SRC
MMRA All 0.7530 1.1787 0.4900
Retrieval w/o RE 0.7745 1.1908 0.4755

Multi-modal
Interaction

w/o Neg 0.7595 1.1838 0.4856
w/o Pos 0.7595 1.1829 0.4870

Modal
Content

w/o V 0.7915 1.2071 0.4536
w/o T 0.7629 1.1844 0.3716

2 4 6 8 10 12 14 16 18 20
0.755

0.765

0.775

nM
SE

nMSE
SRC

0.470

0.480

0.490

Figure 2: Performance vs. Numbers of retrieved videos (𝑘).

Parameter Analysis. To analyze the influence of the number 𝑘
of retrieved instances on MMRA, we conduct experiments on Mi-
croLens dataset. The experimental results are shown in Figure 2. We
observe that the model performance initially improves with an in-
crease in the number 𝑘 and subsequently declines when the number
is too large. When we set 𝑘 to 10 on MicroLens, the model perfor-
mance is optimal. The observed performance degradation with
larger numbers suggests that retrieved large number of instances
from memory bank will influence the representation learning of
the target micro-video.

4 CONCLUSION
This work presented MMRA, the first retrieval-augmented frame-
work for the MVPP task. We propose to align the visual and textual
modalities and generate the retrieval vectors to search Top-𝑘 near-
est videos. We also introduced a cross-modal bipolar interaction
to address the presence of inconsistent information between texts
and video content, as well as a retrieval interaction enhancement
method to capture meaningful knowledge from relevant instances.
Experiments on the real-world micro-video dataset demonstrate
the effectiveness of our method.
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