Borrowing Eyes for the Blind Spot: Overcoming Data Scarcity in
Malicious Video Detection via Cross-Domain Retrieval Augmentation

Rongpei Hong!*, Jian Lang'*, Ting Zhong!, Fan Zhou®?"
'University of Electronic Science and Technology of China,
Intelligent Digital Media Technology Key Laboratory of Sichuan Province

{rongpei.hong, jian_lang}@std.uestc.edu.cn

Abstract

The rapid proliferation of online video-sharing platforms
has accelerated the spread of malicious videos, creating
an urgent need for robust detection methods. However, the
performance and generalizability of existing detection ap-
proaches are severely limited by the scarcity of annotated
video data, as manually curating large-scale malicious de-
tection datasets is both labor-intensive and impractical. To
address this challenge, we propose CRAVE, a novel CRoss-
domAin retrieVal augmEntation framework that transfers
knowledge from resource-rich image-text domain to enhance
malicious video detection. Specifically, CRAVE introduces
a Pseudo-Pair Retriever to identify semantically relevant
image-text data for high-quality cross-domain augmenta-
tion. Additionally, a Contrastive Cross-Domain Augmenter
is designed to disentangle domain-shared and -unique rep-
resentations, effectively bridging the domain gaps during
knowledge transfer. These shared image-text representations
are then leveraged to refine video representations, yielding
more discriminative features for accurate malicious content
detection. Experiments on four video datasets demonstrate
that CRAVE largely outperforms competitive baselines in
both performance and generalization, providing an innova-
tive and strong solution to the issue of video data-scarcity.
The code is available at https://github.com/ronpay/CRAVE.

1. Introduction

Online video-sharing platforms have seamlessly integrated
into people’s daily lives, fundamentally transforming how
information is consumed and shared. However, the rise of
malicious content (e.g., rumors and hateful messages) has
become common on video-sharing platforms, significantly
damaging politics, finance, and public health [2, 5, 35]. To
curb the spreading of the harmful videos, numerous works
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Figure 1. Prior malicious detection methods (Uni-Domain Data
Only) vs. our CRAVE (Cross-Domain Knowledge Transfer).

were proposed and they designed various multimodal ap-
proaches [10, 15, 20, 22, 29] to effectively identify the mali-
cious content in videos.

Nevertheless, in the domain of malicious video detection,
the datasets remain scarce in scale due to the labor-intensive
nature of dataset construction, which requires substantial
human effort to carefully watch and accurately annotate each
video [36]. Most datasets [6, 10, 29, 35] in malicious video
detection contain few samples (e.g., less than 1,000 samples
in hate video detection [10, 35]). As a result, the limited
scale and diversity of data cause existing methods to perform
worse on test sets than on training sets, while also learning
dataset-specific biases that hinder their ability to generalize
effectively to real-world applications [3, 40].

On the other hand, malicious detection datasets in the
image-text domain are typically large-scale and diverse, of-
ten containing tens of thousands of samples [7, 17, 26, 33],
due to the relatively low cost of data annotation. Moreover,
synthetic samples can be easily incorporated into image-text
datasets [17] by appending generated text to existing im-
ages, thereby increasing diversity through the creation of
new instances. Given the similar modality composition and
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malicious semantics between image-text and video domains,
along with the significant disparity in dataset scale, a natural
way to alleviate the video data-scarcity issue is to leverage
the image-text data to enhance the malicious detection in the
video domain (cf. Section 4.2 for experimental evidence).

However, developing such an effective cross-domain aug-
mentation framework is non-trivial due to several key chal-
lenges: (1) The large-scale image-text datasets often contain
noisy instances that can hinder rather than help malicious
video detection. For example, subsets of benign image-text
pairs may be entirely irrelevant to malicious detection tasks
in the video domain, as these datasets are frequently ran-
domly sampled or loosely annotated. Incorporating such
irrelevant instances can result in negative augmentation. (2)
Despite the similar modality composition and malicious se-
mantics between the two domains, transferring detection
knowledge from image-text datasets to the video domain
still involves solving significant domain gaps —namely, the
dynamic nature of video data vs. the static nature of image-
text data. These discrepancies lead to different malicious
expression patterns. Consequently, designing a robust cross-
domain augmentation framework that can effectively filter
noisy image-text data and transfer domain knowledge to en-
hance malicious video detection remains an open challenge.

To this end, we propose CRAVE, a novel and ro-
bust CRoss-domAin retrieVal augmEntation framework de-
signed to tackle the data-scarcity in malicious video detec-
tion. As illustrated in Figure 1, the core difference between
CRAVE and current detection methods lies in the effec-
tive utilization of existing cross-domain data to assist the
detection. By explicitly accessing abundant and diverse
malicious patterns from the image-text domain, CRAVE
achieves remarkable detection generalizability. Specifically,
to address the challenge (1), we introduce a Pseudo-Pair
Retriever, which identifies semantically relevant image-text
data for each target video. By converting videos into pseudo
image-text query pairs, the retriever significantly reduces the
domain gaps during retrieval and ensures high-quality cross-
domain augmentation. As for challenge (2), we propose a
Contrastive Cross-Domain Augmenter, which maximizes
knowledge transfer while mitigating domain gaps. The aug-
menter disentangles domain-shared and -unique represen-
tations through cross-domain decoupling learning. It then
utilizes the domain-shared representations from retrieved
positive and negative image-text samples as ‘“contrastive
references” to refine the shared video representations, mak-
ing them more discriminative. Finally, the refined repre-
sentations are integrated with video-unique representations
to boost detection performance while improving generaliz-
ability to real-world scenarios. Our main contributions are
summarized as follows:

* We propose a novel cross-domain retrieval-augmentation
framework (CRAVE), which pioneers a novel retrieval-

guided cross-domain augmentation paradigm, harnessing
the abundant off-the-thelf image-text data to effectively re-
solve the data-scarcity issue in malicious video detection.

¢ We introduce a fresh Pseudo-Pair Retriever, which avoids
irrelevant knowledge transfer and provides semantically
relevant image-text data for target videos to ensure high-
quality cross-domain augmentation.

* We develop a new Contrastive Cross-Domain Augmenter
that maximally transfers knowledge from relevant image-
text data into malicious video detection while significantly
minimizing cross-domain gaps.

Extensive experiments conducted on four real-world
benchmarks demonstrate that our CRAVE consistently out-
performs competitive baselines. We also evaluate CRAVE
under extreme data-scarcity scenarios and out-of-distribution
detection tasks, with results demonstrating its strong gener-
alizability under challenging scenarios, including extreme
data-scarce limitations and out-of-distribution detection.

2. Related Work

Malicious Video Detection. Malicious video detection aims
to analyze the multimodal content of videos (e.g., title, au-
dio, video frames) and detect any possible malicious content
in videos, such as rumors or hate speech. Most studies in
malicious video detection [9, 10, 29, 32, 35] commonly em-
ploy frozen pre-trained modality encoders like BERT [11],
ViT [12], and ViViT [1] to extract semantic features and
feed the features into a learnable classifier for prediction.
Recently, FakeRec [6] analyzed the process of malicious in-
formation creation by examining material selection and edit-
ing behaviors on micro-video platforms, while NEED [30]
enhanced rumor video detection by modeling event-level
relationships and leveraging debunking rectification.

Although these carefully designed approaches perform
well on the training set for malicious detection, the lim-
ited amount of labeled training data, less than 1,000 sam-
ples [6, 10, 35], largely bounds the models’ ability to capture
sufficient malicious semantics, leading to poor generaliz-
ability in the face of out-of-distribution data in real-world
scenarios. To solve this problem, we propose an effective
cross-domain augmentation framework that leverages rich
and diverse malicious representations from large-scale la-
beled image-text datasets to enhance video detection in data-
constrained environments.
Data Augmentation for Video-based Tasks. Data aug-
mentation is a commonly adopted technique in video-based
tasks to solve the data-scarcity issue caused by substantial
costs associated with video data collection and annotation.
Current data augmentation approaches can be roughly cate-
gorized into two groups: (1) Conventional augmentation and
(2) Knowledge Transfer-based augmentation.

Conventional augmentation methods aim at enlarging the
training datasets for data-scarce downstream tasks by gen-



erating video samples to directly mitigate the data-scarcity.
Traditional generative approaches commonly adopt simple
video transformation or editing (e.g., flipping, cropping, and
speed variation [8, 13, 37]) to create additional samples and
expand training datasets. Although these methods are simple
and straightforward, the newly created samples only demon-
strate surface-level differences compared to the original data,
providing limited data diversity and thus offering a subop-
timal solution for semantically complex downstream tasks
(e.g., malicious video detection). Recently, with the rise of
video generative models (e.g., Sora [23], VideoPoet [19], and
Tune-A-Video [39]), some research has begun to leverage
the exceptional generative ability of these models for video
sample generation. However, these models are typically pre-
trained on benign datasets and are not inherently designed to
generate harmful content. Adapting them to such tasks (e.g.,
malicious detection) requires substantial resource-intensive
fine-tuning, significantly limiting their applicability [14, 42].
Knowledge Transfer-based augmentation focuses on
transferring knowledge from a resource-rich source domain
to a target domain facing data-scarcity [27, 41, 43]. For
instance, a vision-language model pre-trained on a general-
purpose dataset can be adapted to a specific target domain
like medical imaging or remote sensing, where the data is
scarce [18, 31]. In contrast to generative-based methods,
cross-domain augmentation avoids the high overhead of fine-
tuning generative models and achieves broader semantic
diversity by leveraging existing datasets. In this work, we
tackle the data-scarcity issue in malicious video detection by
introducing a novel cross-domain augmentation framework
CRAVE. It effectively transfers knowledge from image-text
data to the domain of malicious video detection while ad-
dressing challenges inherent to cross-domain augmentation,
such as noisy sample negative transfer and domain gaps.

3. Methodology

3.1. Overview

Problem Definition. Following previous work [10, 35], we
consider a malicious video detection dataset, denoted as
Ds = {81, -+ ,Sng}, where Ng is the number of video
samples. Each video is presented as S; = (V;, T;, Y;), where
V; and 7; denote the visual and textual content, respectively,
with Y; indicating the ground truth (malicious or benign).
Notably, we also consider the audio modality by incorporat-
ing audio transcript into the part of textual content. The task
of malicious video detection is defined as Y; = foVi, Ti)s
where fg(-) is the detection model.

Our Pipeline. To tackle the data-scarcity issue in mali-
cious video detection, we propose to transfer the knowl-
edge from a resource-rich image-text dataset with a similar
task to enhance the video detection. The overall frame-
work is illustrated in Figure 2. Specifically, we introduce

an image-text pair malicious detection dataset, denoted as
Dp = {P1,- - ,Pn,}, where Np is the total number
of these pairs. Each pair consists of two modalities, pre-
sented as P; = (Z;,C;,Y;), where Z; and C; represent the
image and text content, respectively, and ); denotes the
ground truth. Our pipeline begins by selecting a set of se-
mantically relevant image-text data N for each video S;
through a cross-domain retrieval, which will be discussed
in Section 3.2. Based on the retrieved data, we disentangle
domain-shared and -unique representations from both do-
mains through cross-domain decoupling learning. Next, the
shared video representation h,, shareq 1S refined into a more
discriminative form through cross-domain contrastive learn-
ing, which will also be introduced in Section 3.3. Finally,
the enhanced shared representation hy, spareq and the unique
representation hy, unique Of the video S; are fused for the final
prediction, which will be presented in Section 3.4.

3.2. Pseudo-Pair Retriever

The abundant samples in image-text datasets also bring the
issue of noisy samples (e.g., benign instances), which are
irrelevant to the target domain task (i.e., malicious video
detection) and may transfer negative knowledge. To solve
this challenge, we propose a new Pseudo-Pair Retriever (PP
Retriever), which acts as a filter and accurately provides
each video with semantically relevant image-text samples
for augmentation through a cross-domain retrieval.

3.2.1. Pseudo-Pair Generation

Directly using videos as queries for image-text retrieval is
highly ineffective due to the significant formal disparity
between video and image-text domains. To solve this chal-
lenge, we propose PP Retriever, a novel retrieval strategy
that converts videos into multiple pseudo-pairs. These pairs
are carefully designed to closely align with the structure and
representation of image-text pairs, enabling more accurate
cross-domain retrieval. For notational simplicity, we use S
to denote the current video sample.

The PP Retriever starts by selecting representative frames
from the video S. Specifically, a total of L frames are uni-
formly sampled from each video and encoded using the CLIP
vision encoder [31]. These encoded frames are subsequently
clustered to identify L representative frames, denoted as
{Z)}}_,. For each representative frame, we construct pseudo-
pairs by associating the frame 7, with the textual content
él, which includes video’s title, the on-screen text, and au-
dio transcript aligned with that frame. Finally, this process
yields L pseudo-pairs for video S, presented as:

75l:<jl,é,>, 1=1,...,L (1)

These structured pseudo-pairs will serve as an effective query
to retrieve relevant image-text pairs from Dp.



3.2 Pseudo-Pair Retrlever

massive

tornado
carves path |
cross eastern

kansas

i []we had one
of you
made this
ring for

| 3.3 Contrastive Cross-Domain Augmenter
' Cross-Domain Decoupling Learning

e e

'
Video Title,
on-screen
Text,
Transcript

Image “Toxt Data N\ Modality Encoder Umque /\ Shared /\ Unlque /
———————————————————— h v v h Encoder Enooder Encoder
. , ; p|_|_|v|_|_| I_I_ITI_'_, vf — I
i it lasted 7 !
wzsz]:zr dat;ss ind E [Cross-Domain Dremepling L P ] hp,shared » EDIO‘ hv,shared
waterspout produced |: pling Learning A\ K
. aterspouts: ¥ ' e p,unique y ~DUO y ~DUO hv,unique
------------- Ny AR [(ITII11] Crrrri [ ——II11T] LTI
Pseudo Pairs {P;};; h
' p,shared i ihv,shmed.f‘ Cross-Domain Contrastive Learning

[ Cross-Domain Retrieval

massive

[Cross-Domain Contrastive Learning] . h+shared

hv,shared

tornado
carves path |
cross eastern| following it in

kansas truck and

Retrieved Image-text Pairs

hv,shared

[T je—td Pull ¢ o
L | O  La g

hv,uniqué«.:_ .
hp,shamed B p,shared  Push

Qprediction | o

Figure 2. Overview of CRAVE framework. (1) Pseudo-Pair Retriever generates pseudo -pairs for input video to retrieve the semantically
relevant pairs from large corpus; (2) Contrastive Cross-Domain Augmenter introduces Cross-Domain Decoupling Learning and Cross-
Domain Contrastive Learning to enable effective knowledge transfer from image-text data to malicious video detection.

3.2.2. Cross-Domain Retrieval

To retrieve the most semantically similar image-text pairs
while avoiding introducing noise, PP Retriever first encodes
visual and textual content of pseudo-pairs P, and each image-
text pair P; from dataset Dp, and calculates the cosine
similarity of encoded embeddings between them:

‘va(?z) Uy (Zy) ‘I’t(?l) W (C)
1, (Z) 1T (Z5) ||‘1’t(Cz)H||‘1’t(Cj)(H2;

sim(”ﬁl, P;) =

where ¥, and ¥; denote the CLIP vision and text encoders.

Subsequently, PP Retriever utilizes a global similarity se-
lection strategy to identify the most relevant top-K T positive
pairs (pairs that share the same category with S) A" and
top-K ~ negative pairs N~ for S:

N = argtop-K< max
PjGD;; €

}<sim<7>z,7>j>>) LB

Lo,

here D; is the positive subset of Dp and N A
{(Ik+,Ck+)}kK::1 denotes the top-K T similar positive
image-text pairs for the given video S. Similarly, N7 =

{(Zy-,Cx-)}i< _, is obtained via retrieving from the nega-
tive subset D

3.3. Contrastive Cross-Domain Augmenter

To facilitate effective cross-domain knowledge transfer, we
propose a Contrastive Cross-Domain Augmenter (CCD Aug-
menter). It begins by disentangling domain-shared and -
unique representations across both domains, thereby mitigat-
ing the domain gaps that hinder knowledge transfer. Building
on this disentangled representation space, CCD Augmenter
leverages shared representations from both retrieved posi-
tive and negative image-text pairs as “contrastive references.”

These references guide the refinement of the target video
shared representations, rendering them more discriminative
for enhanced malicious detection in the video domain.

3.3.1. Feature Extraction

To simplify notation, we define " = A" UN™ " as the set
of retrieved image-text pairs for video S. We first consider
the textual modality 7 of video S along with the retrieved
textual modalities C" = {CJ }4-_,. For video textual modal-
ity 7, we consider concatenating three important textual
components: the video title, on-screen text, and audio tran-
script, represented as 7 = Tt @ T°® T“. Subsequently, the
CLIP text encoder is employed to embed the textual modal-
ities from each domain, yielding the video textual features
h] € R? and the retrieved textual features h] € R¥*,
where d denotes the feature dimension. Similarly, the visual
modality from each domain is embedded by the CLIP vision
encoder to obtain visual features hY € R? and h}f € RExd,

3.3.2. Cross-Domain Decoupling Learning

To mitigate the domain gaps between image-text and video
domains for effective knowledge transfer, CCD Augmenter
introduces a novel cross-domain decoupling learning mech-
anism. Speciﬁcally, CCD Augmenter first utilizes a shared
encoder £, <hared tO €Xtract common representations across the
two domains. Subsequently, a unique encoder &, unique 18

employed for each domain to enhance the decoupling pro-
cess. The encoding process is as follows:

hl; shared — gshared(hT) (4)
T _eoT T
hm umque Em umque (hm)a (5)
where m € {v,p}, and both ] ., and & unique Are im-
plemented using a one-layer MLP. h”, shared and h’ unique



denote domain-shared and -unique textual representations,
respectively. The same process is applied to the visual modal-
ity, resulting in h), 4. s and hY ... Subsequently, we
concatenate the textual and visual representations to gener-
ate a unified modality representation, yielding shared and
unique representations h,,, shared € R2¢ and hy, ynique € R?%.

To ensure the effective extraction of shared representa-
tions, CCD Augmenter proposes a Domain-Invariant Objec-
tive (DIO), which enforces the shared encoders to focus on
capturing transferable patterns across domains. Specifically,
the Kullback-Leibler (KL) divergence is utilized to imple-
ment DIO, aligning the shared representations of image-text
pairs to the video domain:

Lpio = KL (o(hy sharea) || 0 (o shared)) 5 (6)

where hy, shared and hy, gnared denote the domain-shared rep-
resentations from the video and image-text domains and o
represents softmax operation.

To mitigate the coupling of domain-shared and -unique
representations within the same domain, CCD Augmenter
introduces the Domain-Unique Objective (DUO), serving as
an auxiliary loss to separate these representations. Specifi-
cally, an orthogonality loss is adopted to implement DUO,
ensuring a clear distinction between these representations:

Lpuo = Z ||h;7sharedhm,unique||§ ) (7N

mée{v,p}

where h,;;, shared and h,;, unique denote the shared and unique
representations for domain m.

3.3.3. Cross-Domain Contrastive Learning

Based on the shared representations from two domains, CCD
Augmenter introduces a new cross-domain contrastive learn-
ing paradigm. Specifically, CCD Augmenter proposes a
triplet loss-based contrastive learning approach, which aligns
the shared representations between video S and image-text
pairs from the same category as S, while distancing them
away from image-text pairs belonging to the opposite cate-
gory. This process can be expressed as:

Lol = maX(Hhv,shared - h;;L,sha.reng

- ||hv,shared - hp_,shared”% =+ € O)a

®)

+
\yhere hpyshmd. z.md b hared Flenotej the shared represent.a-
tions from positive and negative pairs, € defines the margin
that enforces a minimum distance between these two pairs.

3.4. Prediction

For a given video S, we concatenate the video shared and
unique representations hy, snared and hy, unique, and feed them
into a two-layer MLP-based classifier, yielding the prediction
Y = &ars (hy,shared ® Ny unique ). T optimize malicious video

Dataset # Malicious  # Benign # Total Duration (s)
FakeTT [6] 1,172 819 1,991 47.69
FVC [28] 1,633 1,131 2,764 87.83
MHCIipEN [35] 338 662 1,000 33.84
HateMM [10] 431 652 1,083 150.07
Fakeddit [26] 14,198 21,690 35,888 N/A
FHM [17] 3,266 5,734 9,000 N/A

Table 1. Statistics of four video and two image-text datasets.

detection while enhancing cross-domain knowledge transfer,
we define the total objective function as follows:

Lol = Lers + ALpio + vLpuo + wler, )

where Lcs is the Binary Cross-Entropy loss for video clas-
sification, both Lpjo and Lpyo enforce cross-domain shared
representations extraction, and L¢y facilitates cross-domain
contrastive learning. The coefficients A, 7y, and w control the
relative contributions of the respective loss terms. During
training, all pre-trained encoders are frozen to reduce the
overhead. Details regarding computational complexity anal-
ysis, the training algorithm, and the mathematical proof of
CRAVE’s effectiveness are provided in Appendix B-D.

4. Experiments

4.1. Experimental Setup

A concise summary of the experimental setup is presented
below. Further details regarding the datasets, baselines, and
implementation are available in Appendix E. Moreover, ad-
ditional experiments are presented in Appendix F.

Datasets & Cross-Domain Augmentation Setting. In this
study, we evaluate our CRAVE on four real-world malicious
video detection datasets. To address the data-scarcity is-
sue, we propose a new cross-domain augmentation setting
by leveraging external knowledge from extra resource-rich
image-text datasets to enhance the detection. Detailed statis-
tics of datasets are provided in Table 1, and the datasets
are categorized as follows: (1) Rumor detection datasets:
FakeTT [6] and FVC [28], which focus on identifying rumor
videos on several platforms, including TikTok, YouTube,
and Twitter. We adopt Fakeddit [26], which is a rumor
detection dataset comprising image-text pairs posted from
Reddit, as an extra image-text dataset. (2) Hate detection
datasets: MHCIipEN [35] and HateMM [10], which are hate
video detection datasets with videos collected from YouTube
and BitChute. We select FHM [17], a hate meme dataset
collected by Facebook, as an extra image-text dataset.
Baselines. We compare CRAVE with 10 baselines, which
can be broadly categorized into three groups: (1) Vanilla
detection methods which leverage various multimodal ap-
proaches to detect malicious content in videos, including
HTMM [10], MHCL [35], SVFEND [29], and FakeRec [6].
(2) Conventional augmentation methods, which tackle data-
scarcity in malicious video detection by synthesizing new



Dataset FakeTT FVC MHCIlipEN HateMM

Methods ACC M-F1 M-P M-R ACC M-F1 M-P M-R ACC M-F1 M-P M-R ACC M-F1 M-P M-R
HTMM 70.57 69.69 70.51 73.15 90.01 89.78 89.94 89.65 74.00 66.63 72.19 65.64 7742 7496 7839 74.12
MHCL 7793 7578 76.61 77.99 9047 90.14 91.00 89.67 74.00 70.82 70.82 70.82 78.80 77.85 7797 77.75
SVFEND  77.14 75.63 75.12 77.56 87.59 87.36 87.34 87.40 68.00 4694 69.65 5298 7327 71.71 7221 7142
FakeRec 79.53 7742 77.01 7829 91.22 91.18 91.22 91.65 7050 5433 7423 57.08 74.65 72.07 7476 7143
Spatial Aug. 78.26 76.09 75.58 76.86 90.31 90.07 90.34 89.87 73.00 6844 69.51 67.85 79.72 78.44 79.32 77.94
Temp. Aug. 7291 7193 7232 75.16 89.71 89.55 89.42 89.72 7450 69.20 71.67 6824 7558 7396 74.84 73.53
VIiLT 78.59 77.23 76.66 79.41 81.39 80.99 81.06 80.93 69.50 53.63 69.16 56.33 70.51 6848 69.29 68.16
TSformer  65.38 65.12 69.21 70.93 90.22 89.87 90.39 90.01 70.00 57.65 67.43 5856 70.51 68.78 69.23 68.54
LLaVA 46.93 46.70 53.55 5324 60.10 56.66 58.80 57.41 70.61 66.87 66.74 66.75 73.62 73.82 78.16 77.43
Qwen-VL  53.17 52.71 56.27 57.65 59.72 5820 5851 58.81 7340 6736 70.65 6647 7542 7572 7792 78.39
CRAVE 84.95 83.52 82.77 84.66 96.52 96.45 96.43 96.47 82.50 79.81 80.83 79.06 87.09 86.51 86.67 86.47
Improv. 6.8%1 7.9%7T 7.5%1 8.1%1 5.8%1 5.8%1T 5.7%1 5.3%7T 10.7%7T 12.7%71 8.9%71 11.6%71T 9.2%71 10.3%7T 9.3%71 10.3%71
p-val. 9.0e72 7.5e73 7.8¢73 5.8¢72 2.3e73 2.5¢73 1.7e72 4.4e73 1.8e72 8.4e™2 1.1e72 6.5e72 7.3e™* 1.3¢73 4.0e7% 2.7e73

Table 2. Performance comparison on four real-world video datasets. The best results are in black bold, while the second are underlined.
Higher values of ACC, M-F1, M-P, and M-R indicate better performance.

video data, including Spatial Augmentation [34] and Tem-
poral Augmentation [16]. Notably, these video-based aug-
mentations are only employed to enrich the training dataset
and the results are from the best-performing baselines (Fak-
eRec for FakeTT and FVC while MHCL for MHCIipEN and
HateMM) training on the enriched dataset. (3) Cross-domain
augmentation methods, which transfer knowledge from a
resource-rich domain to target domain, including ViLT [18],
TSformer [4], LLaVA [21], and Qwen-VL [38].

Metrics. Following prior works [6, 35], we adopt metrics
Accuracy (ACC), Macro F1 score (M-F1), Macro Precision
(M-P), and Macro Recall (M-R) to evaluate the performance.
Implementation Details. In this study, we employ pre-
trained CLIP, specifically clip-vit-large-patchl4,
as modality encoders. In pseudo-pair generation, videos are
uniformly sampled to 32 frames and clustered to 10 frames
as representative frames. While in feature extraction, each
video is uniformly sampled to 16 frames to generate visual
embedding. AdamW [24] is adopted as optimizer. The
detailed hyper-parameter settings, including the learning
rate, number of retrieved pairs, and loss coefficients for each
dataset, are reported in Appendix E.3. All experiments are
conducted on a single RTX 4090 GPU.

4.2. Preliminary Experiment

In this section, we validate the feasibility of knowledge trans-
fer from the image-text domain to malicious video detection
by empirically analyzing the semantic relevance of harmful
content between the two domains. Specifically, we randomly
select 300 malicious videos from both the hateful and ru-
mor datasets, along with 300 malicious image-text samples
from their corresponding datasets. We then utilize CLIP to
encode the visual and textual modalities of both videos and
image-text pairs across the hateful and rumor datasets. The
concatenated modality features are projected into a 2D space

(a) FakeTT and Fakeddit Datasets. (b) MHCIlipEN and FHM Datasets.

Figure 3. Visualization of the semantic representations of malicious
samples from two domains. Red points indicate videos and gray
points represent image-text pairs.

using t-SNE [25] for visualization. As shown in Figure 3,
the results reveal a strong semantic relevance in malicious
content across the two domains, supporting the feasibility of
our proposed framework’s motivation.

4.3. Overall Performance

To demonstrate the superiority of our CRAVE, we compare
it against 10 competitive baselines across four datasets, with
the results reported in Table 2. From these results, we have
the following observations:

First, CRAVE outperforms all baselines across all
datasets, achieving an average improvement of 9.2% in M-F1
and 8.1% in ACC. We also calculate the statistical differ-
ences between CRAVE and the strongest baseline by retrain-
ing both models five times. The p-values, all below 0.05, sub-
stantiate the statistical significance of CRAVE’s performance
gains. These gains stem from our novel retrieval-augmented
cross-domain knowledge transfer paradigm. It overcomes
the constraint of visiting only limited data in video domain
and allows the detector to access the expressive knowledge
from resource-rich image-text dataset, largely improving the
performance and generalizability of the detector.

Second, vanilla detection methods demonstrate a certain
degree of ability in video-based malicious content identifica-



FakeTT MHCIlipEN
ACC M-F1 ACC M-F1

PP Vanilla Retriever 82.94 81.83 78.50 74.02
Retriever Random Retriever 81.94 80.86 77.00 72.07

w/o Decoupling 81.60 80.10 79.00 76.60
w/o Contrastive  81.27 80.01 77.50 72.81
w/o Augmenter 77.25 76.46 74.50 65.29

CRAVE All 84.95 83.52 82.50 79.81
Table 3. Ablation study of main components of CRAVE.

Module Variant

CD
Decoupler

tion. For instance, FakeRec captures useful clues from the
perspective of the rumor video creative process for enhanced
detection and achieves competitive results. However, the
limited amount of video training data hinders their generaliz-
ability, incurring suboptimal performance during inference.

Third, conventional augmentation methods yield only
marginal performance improvements or even degrade per-
formance compared to vanilla detectors. This is mainly due
to the limited diversity of synthesized data, particularly in
high-dimensional spatiotemporal patterns, which fails to in-
troduce novel discriminative features and may even inject
noise, blurring the model’s decision boundaries. Further-
more, cross-domain augmentation methods also under-
perform our framework, as the source domain knowledge
they leverage leans toward benign content, making it less
effective for adapting harmful content detection.

4.4. Ablation Study

We conduct a comprehensive ablation study to evaluate the
role of each components within CRAVE, with results pre-
sented in Table 3.

4.4.1. Effect of the PP Retriever

To validate the effect of the PP Retriever, we design two
variant models: (1) Vanilla Retriever: This variant replaces
the PP Retriever with a raw video-based retriever that simply
combines video frames and titles for cross-domain retrieval.
(2) Random Retriever: This variant selects instances ran-
domly from the image-text dataset as retrieval results. From
the results, we observe that the Vanilla Retriever struggles
to address the domain gaps, resulting in inaccurate retrieval
and suboptimal performance. Furthermore, the Random Re-
triever introduces significant noise by arbitrarily selecting in-
stances from the image-text domain, which leads to negative
knowledge transfer and a substantial drop in performance.

4.4.2. Effect of the CCD Augmenter

To assess the CCD Augmenter, we construct three variant
models: (1) w/o Decoupling: This variant directly transfers
knowledge from the image-text dataset to video detection
without decoupling shared representations. Accordingly,
both Lpio and Lpyo are removed. (2) w/o Contrastive: This
variant concatenates the image-text domain-shared represen-

Target Positive Top-1 Negative Top-1
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Figure 4. Presentation of retrieved top-1 positive and negative
image-text pairs for the target video. “Sim.” is the similarity score.
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(a) FakeTT Dataset. (b) MHCIipEN Dataset.

Figure 5. Visualization of the decoupled shared and unique repre-
sentations from video and image-text domain.

tation with the video representation for knowledge transfer,
meanwhile L¢y is excluded. (3) w/o Augmenter: This vari-
ant eliminates the augmenter entirely and relies on the video
representation solely for detection. The results reveal that
removing either cross-domain decoupling learning or con-
trastive learning leads to a performance decline, underscor-
ing their critical roles in effective cross-domain knowledge
transfer. Furthermore, eliminating the augmenter reduces
the model to a vanilla detector, whose performance is signif-
icantly limited by the scarcity of training data.

4.5. Cross-Domain Retrieval Quality Presentation

In this section, we further analyze the effectiveness of the
PP Retriever in cross-domain retrieval by conducting a case
study. We randomly select one video instance from the FVC
dataset and present its retrieved image-text data from the
Fakeddit dataset. As illustrated in Figure 4, the retrieved
image-text data from both positive and negative categories
show high semantic relevance to the target video, validating
the efficacy of the PP Retriever in filtering noisy data and
ensuring high-quality cross-domain augmentation.

4.6. Visualization on Knowledge Transfer

In this section, we thoroughly evaluate the effectiveness
of our proposed CCD Augmenter in transferring the cross-
domain knowledge by presenting feature-level visualization.

4.6.1. Cross-Domain Decoupling Learning Visualization

First, we visualize the shared and unique representations
from both domains. Specifically, we project the shared and
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Figure 6. Visualization of the shared features from malicious and
benign video samples w/o and w/ cross domain contrastive learning.
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(a) FVC to FakeTT Dataset. (b) HateMM to MHCIipEN Dataset.
Figure 7. Comparison of CRAVE with the most competitive base-
line MHCL through cross-platform evaluation settings.

unique representations of both the test set videos and their
corresponding retrieved image-text pairs into a 2D space via
t-SNE. Four distinct colors are used to represent the shared
and unique features of each domain separately. From Fig-
ure 5, we observe that the domain-shared representations
across the two domains are clustered together, while the
unique representations are distinctly separated. These re-
sults highlight the effectiveness of our CCD Augmenter in
bridging cross-domain gaps.

4.6.2. Cross-Domain Contrastive Learning Visualization

Subsequently, we visualize the domain-shared representa-
tions of test set videos before and after enhancement through
cross-domain contrastive learning by mapping their features
into a 2D space through t-SNE. As depicted in Figure 6, the
refined representations exhibit clearer boundaries between
malicious and benign instances compared to the original
ones. This highlights the effectiveness of CCD Augmenter
in generating more discriminative representations.

4.7. Detection Generalizability Analysis

To comprehensively validate the malicious detection gener-
alizability of CRAVE, we conduct both out-of-distribution
detection evaluation and extreme data-scarcity analysis. No-
tably, we apply the same cross-domain augmentation mecha-
nism as used in the main experiments to CRAVE, allowing it
to visit the powerful “knowledge” from image-text datasets.

4.7.1. Out-of-Distribution Detection Evaluation

We compare the out-of-distribution detection capability of
CRAVE and competitive baseline MHCL through cross-
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(a) FakeTT Dataset. (b) MHCIipEN Dataset.
Figure 8. Comparison of CRAVE with the most competitive base-
line MHCL under conditions of 5%, 10%, and 20% training set.

platform detection experiments. Specifically, we pair the
datasets FVC with FakeTT and HateMM with MHCIlipEN.
For each pair, the model is trained on the first dataset and
evaluated on the second, with results presented in Figure 7.
We observe that CRAVE consistently surpasses the MHCL
across both cross-platform scenarios, as it effectively lever-
ages the diverse distributed cross-domain knowledge to en-
hance the detection generalizability.

4.7.2. Extreme Data-Scarcity Analysis

To further assess the generalizability of CRAVE under ex-
tremely limited training data conditions, we progressively
reduce the size of the training set to 5%, 10%, and 20%
of its original scale, a scenario prone to overfitting on the
training data. As illustrated in Figure 8, CRAVE consis-
tently outperforms the strongest baseline, MHCL, across
all settings. Notably, even with only 10% of the training
data, CRAVE achieves an accuracy of more than 70% on
both datasets, highlighting the superior generalizability of
CRAVE in maintaining high detection performance under
extreme data-scarcity scenarios.

5. Conclusion

In this work, to tackle the data-scarcity challenge in ma-
licious video detection, we propose a novel cross-domain
retrieval-augmentation framework (CRAVE). This frame-
work consists of two core components: (1) A new Pseudo-
Pair Retriever which converts raw videos into pseudo-pairs
for more accurate cross-domain retrieval, providing semanti-
cally relevant image-text instances for high-quality augmen-
tation. (2) A fresh Contrastive Cross-Domain Augmenter
that disentangles domain-shared and domain-unique repre-
sentations, leveraging the shared image-text representations
to refine video representations through cross-domain con-
trastive learning. Extensive experiments on four benchmarks
demonstrate the strong detection ability and generalizability
of CRAVE, providing a promising solution to data-scarcity
conditioned malicious content detection.
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