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Abstract
Short Video Hate Detection (SVHD) is increasingly vital as hate-
ful content — such as racial and gender-based discrimination —
spreads rapidly across platforms like TikTok, YouTube Shorts, and
Instagram Reels. Existing approaches face significant challenges:
hate expressions continuously evolve, hateful signals are dispersed
across multiple modalities (audio, text, and vision), and the con-
tribution of each modality varies across different hate content. To
address these issues, we introduce MoRE (Mixture of Retrieval-
augmented multimodal Experts), a novel framework designed to
enhance SVHD. MoRE employs specialized multimodal experts for
each modality, leveraging their unique strengths to identify hateful
content effectively. To ensure model’s adaptability to rapidly evolv-
ing hate content, MoRE leverages contextual knowledge extracted
from relevant instances retrieved by a powerful joint multimodal
video retriever for each target short video. Moreover, a dynamic
sample-sensitive integration network adaptively adjusts the im-
portance of each modality on a per-sample basis, optimizing the
detection process by prioritizing the most informative modalities
for each instance. Our MoRE adopts an end-to-end training strat-
egy that jointly optimizes both expert networks and the overall
framework, resulting in nearly a twofold improvement in training
efficiency, which in turn enhances its applicability to real-world sce-
narios. Extensive experiments on three benchmarks demonstrate
that MoRE surpasses state-of-the-art baselines, achieving an aver-
age improvement of 6.91% in macro-F1 score across all datasets.
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1 Introduction
Media consumption trends have increasingly shifted toward short
videos, particularly on platforms like TikTok, YouTube Shorts, and
Instagram Reels [12, 69, 75]. As a dynamic and immersive commu-
nication medium, short video can significantly boost user engage-
ment and capture a larger share of daily screen time [2, 6, 13, 32, 74].
These videos seamlessly integrate diverse media modalities – such
as audio, text, and vision – to convey information, exerting more
substantial effects on mental health and social cohesion than con-
tent confined to a single modality.

However, this multimodal integration also enables the subtle
and covert dissemination of hateful content1, embedding harmful
messages across various media forms. Hateful content in short
videos often targets attributes like race, gender, or religion [10,
25, 45, 58, 66, 67] and can manifest through multiple modalities.
Moreover, the prevalence of hateful content varies across modalities,
with each contributing uniquely to its overall impact. The continual
evolution of hateful content – driven by shifting social issues and
advancements in tools for AI generated content (e.g., OpenAI’s Sora
[76]) – underscores the pressing need for highly effective methods
to tackle the task of Short Video Hate Detection (SVHD).

Hateful content detection has been extensively studied in litera-
ture [1, 7–9, 15, 33, 41, 46, 49]. The majority of these works focus on

1Disclaimer: This paper contains discussions of violence and discriminatory content
that may be disturbing to some readers.
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Fig. 1: Illustration of motivation. (a): As new social events
emerge, the expressions of hateful content undergo constant
evolution. (b): Multimodal distribution of hateful content in
the MHClip-B dataset [63]. The blue donut chart illustrates
the distribution of hateful content across differentmodalities
– audio, text, and vision. The red donut chart depicts the
proportions of short videos that contain hateful content in
one, two, or all three modalities.

text-based analyses [1, 15, 33, 49] within microblogging platforms
such as Twitter and Facebook.With the increasing integration of im-
ages in social media posts and the advancements in image process-
ing technologies, researchers have expanded their efforts to identify
hateful elements in text-image posts and memes [7–9, 41, 46], utiliz-
ing pre-trainedmodels and incorporating task-specific classification
layers. However, despite the rapid rise in the popularity of short
videos, research on hate detection in short videos remains very
limited [14, 63]. Short videos encompass multiple modalities, which
can subtly and covertly facilitate the dissemination of hateful con-
tent. In addition, the prevalence of hateful content varies across
these modalities in short videos, which necessitates a dynamic and
adaptable detection framework that can effectively identify hateful
content across diverse modalities. Moreover, as hateful content is
subject to continuous evolution, developing an effective and ro-
bust framework for SVHD entails addressing several significant
challenges, which are summarized as follows:
Challenge 1: Adapting to the Evolution of Hateful Content.
Hateful content continuously evolves in response to societal shifts,
becoming more subtle and increasingly difficult to detect. Fig. 1(a) il-
lustrates an evolution example through three short videos. Initially,
hate expressions employed imagery related to the 9/11 attacks to
overtly criticize terrorism in the USA. Subsequently, during the
COVID-19 pandemic, more nuanced and veiled content emerged,
satirizing the response of American society. More recently, a com-
bination of video game imagery and photos from the US Capitol
attack has been utilized to critique American politics. This progres-
sion underscores the adaptive nature of hateful content over time.
Consequently, it is imperative to develop detection frameworks
that remain current and can generalize across increasingly evolving
forms of hate in short videos.

Challenge 2:HarnessingMultipleModalities forHateful Con-
tent Analysis. Short videos encompass multimodal information
such as audio, text, and visual content. Effectively utilizing data
from different modalities for hate detection poses a significant chal-
lenge. The left side of Fig. 1(b) shows the modality-wise distribution
of hateful content in the MHClip-B [63] dataset, highlighting that
each modality contributes essential information for detecting hate-
ful content, which can manifest in various forms. For instance, hate
speech may be embedded in textual overlays, discriminatory lyrics
may be presented in background music, and offensive gestures may
appear in visual streams. Therefore, it is critical to develop a mul-
timodal framework that can effectively integrate all modalities to
detect various types of hateful content in short videos.
Challenge 3: Managing Modality-Specific Influences in Hate
Detection. Not all modalities in short videos contribute equally to
hate detection; each modality plays a distinct role. As shown in the
right of Fig. 1(b), 75.3% short videos in theMHClip-B dataset contain
hateful content presented in only one or two modalities. This dis-
tribution suggests that indiscriminately integrating all modalities
could be counterproductive. The detection model may overempha-
size noisy or redundant information, misleading the learning pro-
cess and degrading detection performance. Thus, focusing on the
most informative modalities and content is crucial for accurate de-
tection. A more adaptive and selective multimodal fusion approach
is needed to dynamically adjust each modality’s contribution at the
sample level, ensuring more precise hate detection.

To address these challenges, we propose a novel Mixture of
Retrieval-augmented multimodal Experts (MoRE) framework. It
introduces contextual knowledge-augmented multimodal experts
designed to well adapt the dynamic and evolving hateful content
and effectively harnesses data dispersed across multiple modalities
in short videos for detection (i.e., Challenges 1 & 2). First, a basic
expert is developed to focus on individual modalities, including
audio, text, and vision. To adapt to the evolving nature of hate-
ful content – mimicking human learning processes [28, 29] – our
model retrieves relevant information to deepen its understanding
on specific topics. The basic expert is subsequently augmented
with contextual knowledge retrieved via a powerful joint multi-
modal video retriever, which integrates audio, textual, and visual
modalities for fine-grained video-to-video retrieval. By leveraging
contextual knowledge from the retrieved videos, the experts re-
main aware of the evolving expressions of hate, thereby enhancing
their capability to generalize to emerging forms of hateful content.
These contextual knowledge-augmented multimodal experts not
only improves the adaptability of MoRE to new hate expressions
but also ensures more accurate and comprehensive detection of
hateful content across multiple modalities.

To address the varying significance of each modality in hate
detection for different short videos (Challenge 3), MoRE incorpo-
rates a novel sample-sensitive integration network. This network
includes a modality-mixture soft router which identifies the specific
contributions of each modality’s features to hate detection in each
video, prioritizing those with the most significant impact for each
video sample. Consequently, the network accurately determines the
contributions of different modalities at the sample level, enhancing
detection performance and providing interpretability regarding the
roles of various modalities in hate detection for each short video.
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Additionally, instead of a traditional two-stage training pro-
cess [5, 68, 71], we introduce a unified and effective end-to-end
training paradigm. This paradigm jointly optimizes both the ex-
perts and the overall framework, providing a scalable and applicable
solution for SVHD. In summary, the key contributions of this work
are as follows:
• Contextual Knowledge-Augmented Multimodal Experts:
We design several multimodal experts to better adapt to the con-
tinuously evolving nature of hateful content in short videos and
harness the multiple modalities in hate detection. By retrieving
relevant instances through a powerful joint multimodal video
retriever, the experts acquire contextual knowledge that deepens
their understanding of specific topics, enabling them to keep
pace with the evolving expressions of hate in short videos.

• Sample-Sensitive Integration Network: We propose a novel
adaptive integration network that evaluates the varying contri-
butions of different modalities within individual video samples
to improve the performance of hate detection. This adaptive
integration network dynamically adjusts the influence of each
modality, prioritizing those with the most significant impact on
detecting hateful content, thereby ensuring more precise and
effective detection.

• Unified End-to-End Training Paradigm:We develop an effec-
tive end-to-end training paradigm that significantly enhances the
model’s scalability and applicability, making the model highly
suitable for deployment in large-scale SVHD applications.
Extensive experiments on three real-world short video datasets

demonstrate that MoRE outperforms state-of-the-art baselines. No-
tably, our model achieves an average improvement of 6.91% in
macro-F1 score across all three datasets. Furthermore, our model
surpasses three popular Large Vision-Language Models (LVLMs),
highlighting its effectiveness and efficiency for SVHD, even when
compared to large models trained on trillions of tokens and billions
of parameters. The source codes and data required to reproduce
our results are available at https://github.com/Jian-Lang/MoRE.

2 Related Work
Early studies primarily focused on identifying hate speech within
text-basedmaterials. Traditionalmachine learning approaches, such
as Support Vector Machines and Naive Bayes classifiers [34, 65],
have been commonly used for detection. With the rise of deep
learning, more advanced methods have been developed for hate
speech detection [1, 49]. Subsequently, multimodal hate detection,
which analyzes both textual and visual information in posts and
memes, has made significant progress [7–9, 41, 47]. For example,
Pro-Cap [7] leverages pre-trainedmodels and prompting techniques
to generate image captions that identify hateful content. However,
despite their effectiveness, these approaches are not directly appli-
cable to hate detection in videos. Unlike text-image posts or memes,
videos consist of multiple frames and incorporate various modali-
ties, making it unclear which modality carries the hateful message,
thereby highly increasing detection complexity.

Research on video-based hate detection remains limited. Recent
advancements include the introduction of benchmark datasets such
as HateMM [14] and MHClip [63]. Although baseline detection
models were provided, they simply fused audio, text, and visual

features equally for prediction. This simple design undermines their
effectiveness in SVHD, as it overlooks the dynamic nature of hateful
content and the varying significance of each modality in detecting
hate across different short videos. In contrast, our proposed MoRE
first retrieves the most relevant instances to construct the contex-
tual knowledge-augmented multimodal experts that adapt to the
evolving nature of hateful content. Then, a sample-sensitive inte-
gration network adaptively assigns weights to these experts at the
sample level, further enhancing the prediction accuracy of MoRE
in detecting hateful content in short videos. Additional research re-
lated to the multimodal retrieval and the Mixture of Experts (MoE),
is reviewed in Appendix A.

3 Methodology
Problem Statement. Let S = {𝑆1, · · · , 𝑆𝑁 } denote the set of short
videos on video platforms, where 𝑁 is the number of short videos.
Each short video 𝑆𝑖 is characterized by its multimodal content,
including audio, textual, and visual content, expressed as 𝑆𝑖 =

{𝑠𝑎
𝑖
, 𝑠𝑡
𝑖
, 𝑠𝑣
𝑖
}. The objective of SVHD is to determine whether a given

short video 𝑆𝑖 is hateful or non-hateful by considering all its
modal contents 𝑠𝑎

𝑖
, 𝑠𝑡
𝑖
, and 𝑠𝑣

𝑖
.

Feature Extraction. The extracted features are summarized as
follows: the audio features x𝑎

𝑖
∈ R𝑙×𝑑𝑎 , the visual features x𝑣

𝑖
∈

R𝑚×𝑑𝑣 , and the textual features x𝑡
𝑖
∈ R𝑛×𝑑𝑡 , where 𝑙 is the number

of audio frames,𝑚 is the number of key frames sampled from the
video, and 𝑛 represents the number of word tokens. 𝑑𝑎 , 𝑑𝑡 , and 𝑑𝑣
are the feature dimensions for each modality. The detailed feature
extraction process is provided in Appendix B.

Fig. 2 provides an overview of our proposed MoRE framework
and illustrates the relationship among its core components. The fol-
lowing sections will delve into each component of MoRE, providing
detailed explanations of their roles and interactions.

3.1 Joint Multimodal Video Retriever
To provide relevant instances to make our framework better adapt
to the complex and evolving nature of hateful content, we design
a novel joint multimodal video retriever, which simultaneously
incorporates audio, textual, and visual features to perform video-to-
video retrieval, moving beyond the limitations of unimodal retrieval
methods that rely on a single modality. By jointly considering all
modalities, our strategy enables the retrieval of instances associ-
ated with the target video from multiple perspectives, leading to
significantly improved retrieval precision.

3.1.1 Memory Bank Construction. To store high-quality seman-
tic information as prior knowledge, we define the memory bank
B, which encodes audio, textual, and visual content using a col-
lection of (audio, text, vision) triples. Detailed description of the
construction of memory bank B is provided in Appendix C.3.

3.1.2 Query Construction. To fully capture the unique characteris-
tics of each modality, we first encode the audio, textual, and visual
features independently. Specifically, for each short video 𝑆𝑖 , we first
extract its audio transcription using Whisper [54], a pre-trained
automatic speech recognition model. The transcription is then pro-
cessed by a pre-trained BERT [17] model to generate the audio
query vector r𝑎

𝑖
∈ R𝑑𝑎 . For textual retrieval, we use the BERT

https://github.com/Jian-Lang/MoRE
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Fig. 2: Overall framework of MoRE. (1): The joint multimodal video retriever identifies similar instances by considering all the
modalities. (2): The contextual knowledge-augmented multimodal experts are designed to utilize retrieved information from
(1) to adapt to evolving hate expressions, while leveraging all the modalities for accurate detection. (3): The sample-sensitive
integration network provides a flexible mixture to allocate weights to each expert in (2). "H": Hateful, "N": Non-hateful.

model to extract semantic features from the concatenated title and
description of 𝑆𝑖 , resulting in the textual query vector r𝑡

𝑖
∈ R𝑑𝑡 .

Finally, for visual retrieval, we input the key frames of 𝑆𝑖 into a
pre-trained Vision Transformer (ViT) [20] and average the frame
representations to generate the visual query vector r𝑣

𝑖
∈ R𝑑𝑣 .

3.1.3 Weighted Similarity-based Multimodal Retrieval. To effec-
tively and comprehensively capture the relevance across audio, tex-
tual, and visual modalities, we propose a weighted similarity-based
multimodal retrieval strategy. Specifically, given a short video 𝑆𝑖 ,
we compute a weighted cosine similarity score that integrates the
similarities from audio, textual, and visual queries. The similarity
score between two videos 𝑆𝑖 and 𝑆 𝑗 is computed as:

Score = 𝑤𝑎 · sim(r𝑎𝑖 , r
𝑎
𝑗 ) +𝑤𝑣 · sim(r𝑣𝑖 , r

𝑣
𝑗 ) +𝑤𝑡 · sim(r𝑡𝑖 , r

𝑡
𝑗 ), (1)

where 𝑤𝑎 , 𝑤𝑣 , and 𝑤𝑡 are the weights assigned to the similarity
of each modality; r𝑎

𝑖
, r𝑣
𝑖
, and r𝑡

𝑖
represent the audio, visual, and

textual query vectors for video 𝑆𝑖 , respectively. After calculating
the similarity scores between 𝑆𝑖 and each short video stored in
B, the top-𝐾 most similar hateful videos 𝑆𝑟

𝑖
= {𝑆𝑟 𝑗

𝑖
}𝐾
𝑗=1 and the

top-𝐿 most similar non-hateful videos 𝑆𝑟
𝑖
= {𝑆𝑟 𝑗

𝑖
}𝐿
𝑗=1 are selected

as retrieval results. These retrieved instances provide contextual
knowledge, empowering modality experts to more effectively ad-
dress the evolving nature of hateful content in short videos, which
will be discussed in the next section.

3.2 Contextual Knowledge-Augmented
Multimodal Experts

In the context of MoE, the experts represent neural networks de-
signed to tackle particular types of tasks or data patterns. To begin
with, we propose the multimodal experts networks, where each ex-
pert network is assigned to process a specific modality. Specifically,
following the previous works [5, 68, 73], we simply define three

modality experts, where each expert network adopts a feed-forward
network (FFN) structure to capture modality-specific features,

E𝑚𝑖 = FFN(x𝑚𝑖 ) =
(
ReLU(x𝑚𝑖 W1 + 𝑏1)

)
W2 + 𝑏2, (2)

where𝑚 ∈ {𝑎, 𝑡, 𝑣} denotes the type of modality, E𝑚
𝑖

∈ R𝑠×𝑑 is the
representation of the modality expert for the short video 𝑆𝑖 , 𝑠 is the
sequence length, and 𝑑 is the feature dimension.

A significant limitation of the vanilla experts in prior works
lies in their inability to adapt to the evolving nature of hateful con-
tent. To address this, we propose the Bipolar Hateful Attention Net-
work (BHAN), which equips contextual knowledge from relevant
videos to the vanilla experts to make them “up-to-date”. Inspired
by contrastive learning, BHAN utilizes hateful and non-hateful in-
stances retrieved from the memory bank B, equipping experts with
contextual knowledge from both types of content. By leveraging
these contrasting examples, BHAN empowers the experts to stay
responsive to the ongoing shifts in hateful behavior and to capture
the subtle distinctions between hateful and non-hateful content.

Specifically, for each modality expert, we first feed the retrieved
hateful modality features x𝑚,𝑟

𝑖
= {x𝑚,𝑟 𝑗

𝑖
}𝐾
𝑗=1 and non-hateful modal-

ity features x̄𝑚,𝑟
𝑖

= {x̄𝑚,𝑟 𝑗
𝑖

}𝐿
𝑗=1 into the FFN to obtain the embed-

dings E𝑚,𝑟
𝑖

and Ē𝑚,𝑟
𝑖

, where 𝑚 ∈ {𝑎, 𝑡, 𝑣}. To equip the modality
expert representation E𝑚

𝑖
with bipolar contextual knowledge, we

introduce two attention mechanisms: AttHat for hateful and AttNon
for non-hateful attention. This process can be formalized as:

Ẽ𝑚,𝑐
𝑖

= AttHat (E𝑚𝑖 , E
𝑚,𝑟
𝑖

, E𝑚,𝑟
𝑖

) + AttNon (E𝑚𝑖 , Ē
𝑚,𝑟
𝑖

, Ē𝑚,𝑟
𝑖

) + E𝑚𝑖 , (3)

with the attention mechanisms AttHat and AttNon defined as:

AttHat (Q,K,V) = 𝛼 · Softmax
(
QK𝑇
√
𝑑

)
V, (4)

AttNon (Q,K,V) = (1 − 𝛼) · Softmax
(
QK𝑇
√
𝑑

)
V, (5)
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where 𝛼 denotes the balance between the hateful and non-hateful
attention contributions. We then apply an attentive pooling strat-
egy [61] to Ẽ𝑚,𝑐

𝑖
∈ R𝑠×𝑑 across the sequence dimension to obtain

the representation of the contextual knowledge-augmented multi-
modal experts E𝑚,𝑐

𝑖
∈ R𝑑 for the short video 𝑆𝑖 .

3.3 Sample-Sensitive Integration Network
The considerable variability in modality characteristics across dif-
ferent short videos, along with the fact that the importance of each
modality varies significantly for detecting hateful content in dif-
ferent videos, jointly pose a major challenge for traditional modal
fusion techniques in SVHD. These methods typically apply equal
weighting to all modalities, disregarding the variation in modal
contributions across different samples during prediction. To ad-
dress this, we propose a sample-sensitive integration network that
adaptively assigns weights to each modality expert based on the
unique characteristics of input video samples, prioritizing the most
influential modalities for detecting hateful content in each video.

Specifically, we first employ a non-parametric strategy by apply-
ing average pooling to the original representations of each modality,
resulting in comprehensive representations for the three modali-
ties: x̃𝑎

𝑖
∈ R𝑑𝑎 , x̃𝑡

𝑖
∈ R𝑑𝑡 , and x̃𝑣

𝑖
∈ R𝑑𝑣 . Subsequently, we align the

modal dimensions to a uniform size and design a Modality-mixture
Soft Router (MSR) — i.e., a two-layer MLP — to generate dynamic
weights for the fusion of the multimodal experts E𝑎,𝑐

𝑖
, E𝑡,𝑐
𝑖
, and E𝑣,𝑐

𝑖
at the sample-level. This process yields the final representation for
the short video 𝑆𝑖 , which can be expressed as:

W̃𝑖 = [�̃�𝑎𝑖 , �̃�
𝑡
𝑖 , �̃�

𝑣
𝑖 ] = MSR( [Ψ𝑎 (x̃𝑎𝑖 ),Ψ𝑡 (x̃

𝑡
𝑖 ),Ψ𝑣 (x̃

𝑣
𝑖 )]), (6)

𝑤𝑚𝑖 = Softmax(�̃�𝑚𝑖 ) = 𝑒�̃�
𝑚
𝑖∑

𝑗∈{𝑎,𝑡,𝑣} 𝑒
�̃�

𝑗

𝑖

, (7)

E𝑖 =
∑︁

𝑚∈{𝑎,𝑡,𝑣}
𝑤𝑚𝑖 · E𝑚,𝑐

𝑖
, (8)

where [,] is the concatenation operation, Ψ𝑎 (·), Ψ𝑡 (·) and Ψ𝑣 (·)
denote the linear mapping functions, 𝑤𝑚

𝑖
represents the weight

assigned to each modality expert for short video 𝑆𝑖 , and E𝑖 ∈ R𝑑 is
the final representation for prediction. E𝑖 is then fed into a predictor
(i.e., a two-layer MLP with an activation function) to generate the
classification result for short video 𝑆𝑖 : 𝑦𝑖 = Predictor(E𝑖 ).

3.4 End-to-End Training
Previous MoE-based approaches [5, 68, 71] commonly employ a
two-stage training paradigm. Each expert network is trained inde-
pendently in the first stage, and in the second stage, these experts
are integrated with a router network for joint optimization. While
this approach allows for comprehensive expert training, it intro-
duces considerable computational overhead by separate optimiza-
tion phases, limiting its efficiency in real-world applications.

In contrast, we propose amore efficient and practically applicable
end-to-end training paradigm, where the expert networks and
the overall framework are optimized jointly, leading to greater
computational efficiency. Specifically, we define the classification
outputs from each modality expert as 𝑦𝑎

𝑖
, 𝑦𝑡
𝑖
, and 𝑦𝑣

𝑖
. The joint

training process is formulated as:

𝐿joi = min{1 − 𝑓epo, 1 − 𝛿} · 𝐿exp + max{𝑓epo, 𝛿} · 𝐿ovl, (9)

𝐿exp =
∑︁

𝑚∈{𝑎,𝑡,𝑣}
𝐿BCE (𝑦𝑚𝑖 , 𝑦𝑖 ), (10)

𝐿ovl = 𝐿BCE (𝑦𝑖 , 𝑦𝑖 ), (11)

where 𝐿exp represents the training loss for the expert networks and
𝐿ovl denotes the loss for overall framework. 𝛿 represents a small pos-
itive constant (non-zero), used to ensure stability during training.
𝐿BCE is the binary cross-entropy loss. The smoothly varying weight
function 𝑓epo = (epochcurrent/epochtotal)2 modulates the focus of
the loss during training, placing greater emphasis on modality ex-
pert training during the early stages and gradually shifting toward
optimizing the entire network in the later stages.

4 Experiments
In this section, we conduct extensive experiments to verify the
efficacy of MoRE. Initially, we provide an overview of the datasets,
baselines, metrics, and implementation details, with details available
in Appendix C.
Datasets. To evaluate the efficacy of the proposed MoRE, we con-
duct comprehensive experiments on three real-world short video
datasets, including HateMM [14], MultiHateClip-Youtube (MHClip-
Y) and MultiHateClip-Bilibili (MHClip-B) [63].
Baselines. We compare MoRE with 9 competitive baselines, which
can be categorized into three distinct groups: (1) Unimodal hate
detection methods, which utilize a single modality for hate detection,
including BERT [17], ViViT [3], and MFCC [16]. (2)Multimodal hate
detection methods, which incorporate all available modalities within
the short video to enhance the prediction accuracy, including Pro-
Cap [7], HTMM [14], and MHCL [63]. (3) Large Vision-Language
Model (LVLM)-based methods, which leverage task-agnostic multi-
modal pre-training and demonstrate superior performance in visual
question answering and video captioning, including the recently
released MiniCPM-V [70], LLaVA-OV [38], and Qwen2-VL [64].
Metrics. Following prior works [14, 63], we adopt four metrics in
SVHD to comprehensively evaluate the model’s performance: clas-
sification Accuracy (ACC), Macro-F1 score (M-F1), Macro Precision
(M-P) and Macro Recall (M-R).
Implementation Details. During the retrieval, the default weight
for each modality is set to equal. The number of retrieved videos
𝐾 and 𝐿 are set to 50, the bipolar attention balancing ratio 𝛼 is
set to 0.7, and the positive constant 𝛿 in end-to-end training is set
to 0.2. We utilize the AdamW [42] optimizer with a learning rate
of 5 × 10−4 and a weight decay of 5 × 10−5 for model parameters
optimization. For baseline models, we strictly adhere to the settings
specified in their original papers.

4.1 Overall Performance
To verify the superiority of our MoRE, we compare it with 9 com-
petitive baselines on three datasets and the results are reported in
Table 1. From these results, we have the following observations:

(O1):Multimodal hate detectionmethods generally outper-
form the unimodal methods. Unimodal methods only leverage
single modality for prediction, which is prone to missing essential
information and overlooking hateful content manifesting in other
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Table 1: Experimental results of the competitive baseline models and the proposed MoRE on the HateMM, MHClip-Y and
MHClip-B datasets. ACC: Accuracy, M-F1: Macro-F1 score, M-P: Macro Precision, M-R: Macro Recall. The best results are in red
bold, while the second results are in black bold. Higher values of ACC, M-F1, M-P, and M-R indicate better performance.

HateMM MHClip-Y MHClip-B

Method ACC M-F1 M-P M-R ACC M-F1 M-P M-R ACC M-F1 M-P M-R
BERT 0.6912 0.6368 0.7008 0.6396 0.6547 0.4909 0.5522 0.5220 0.7251 0.6771 0.6839 0.6279
ViViT 0.6820 0.6670 0.6682 0.6661 0.6705 0.6143 0.6215 0.6111 0.7099 0.6610 0.6661 0.6575
MFCC 0.6543 0.6031 0.6410 0.6069 0.6650 0.4715 0.5877 0.5222 0.6307 0.5250 0.5410 0.5304
Pro-Cap 0.6451 0.6326 0.6335 0.6321 0.7006 0.6633 0.6633 0.6633 0.7250 0.6677 0.6606 0.6832
HTMM 0.7603 0.7278 0.7794 0.7201 0.7153 0.6319 0.6830 0.6264 0.7102 0.6183 0.6654 0.6136
MHCL 0.7741 0.7654 0.7649 0.7659 0.7103 0.6547 0.6722 0.6486 0.7650 0.7311 0.7320 0.7302
MiniCPM-V 0.7235 0.7228 0.7781 0.7635 0.6910 0.6742 0.6929 0.6740 0.7157 0.7015 0.7359 0.7044
LLaVA-OV 0.7558 0.7557 0.7790 0.7828 0.7350 0.6766 0.7045 0.6674 0.7521 0.7078 0.7143 0.7031
Qwen2-VL 0.7373 0.7371 0.7805 0.7732 0.7050 0.6677 0.6684 0.6671 0.7601 0.7326 0.7385 0.7285
MoRE 0.8341 0.8235 0.8178 0.8334 0.7750 0.7519 0.7567 0.7482 0.7850 0.7475 0.7568 0.7410
Improv. 7.75%↑ 7.59%↑ 4.78%↑ 6.46%↑ 5.44%↑ 11.13%↑ 7.41%↑ 11.01%↑ 2.61%↑ 2.03%↑ 2.48 %↑ 1.48%↑
𝑝-val. 9.72𝑒−3 8.52𝑒−3 7.44𝑒−3 7.51𝑒−3 9.91𝑒−4 3.07𝑒−4 1.47𝑒−3 3.67𝑒−4 2.29𝑒−4 1.68𝑒−3 2.62𝑒−4 3.61𝑒−3

modalities, leading to weak performance. Multimodal detection
methods leverage features from all the modalities to improve the
precision of prediction. Moreover, MoRE performs best among mul-
timodal methods, as these multimodal baselines typically overlook
the evolving nature of hateful content, which requires the model to
remain current. Furthermore, these methods often adopt a vanilla
fusion strategy that treats modalities equally in modal fusion, over-
looking the varying importance of each modality across different
instances in SVHD, which requires a more flexible fusion approach.

(O2): LVLM-based methods exhibit strong performance in
SVHD. LVLM-based methods have recently gained prominence due
to their impressive performance across a wide range of multimodal
tasks. These methods leverage the latest advanced LVLMs, whose
effectiveness largely stems from extensive pre-training on large-
scale vision-language corpora, enabling them to generalize well
across many multimodal downstream tasks. Despite their strong
capability in detecting hate in short videos, MoRE outperforms
these models due to the lack of task-specific adaptation in LVLMs
required for SVHD.

(O3): MoRE outperforms all strong baseline models across
three datasets. Notably, MoRE achieves average improvements of
5.27% in ACC and 6.91% in M-F1 across all three datasets. To further
validate MoRE’s superiority, we compute the statistical differences
between MoRE and the best-performing baseline by retraining both
models five times. These performance gains demonstrate the effec-
tiveness of incorporating expressive contextual knowledge from re-
trieved instances, which enables the experts to adapt to the evolving
nature of hateful content and enhances their discriminative power.
Moreover, the sample-sensitive integration network dynamically
allocates contribution for each expert based on the characteristics
of each video sample, leading to further improvements in SVHD.

4.2 Ablation Study
To further understand the roles of core components and multimodal
experts in our proposed MoRE framework, comprehensive ablation
studies are conducted.

Table 2: Ablation study on core components within MoRE.
The best results are in black bold.

HateMM MHClip-Y MHClip-B

Variant ACC M-F1 ACC M-F1 ACC M-F1
Uni Retriever 0.7972 0.7744 0.7402 0.6810 0.7790 0.7303
w/o Retriever 0.7557 0.7355 0.6950 0.6637 0.7150 0.6836
BHAN-AttHat 0.8018 0.7887 0.7610 0.6881 0.7550 0.7009
BHAN-AttNon 0.8110 0.7985 0.7550 0.7240 0.7750 0.7358
w/o BHAN 0.7880 0.7723 0.7315 0.7120 0.7001 0.6581
w/o Router 0.7882 0.7734 0.7302 0.6815 0.7211 0.6902
MoRE 0.8341 0.8235 0.7750 0.7519 0.7850 0.7475

4.2.1 Ablation Study on Core Components. We conduct an ablation
study to analyze the role of each core component within MoRE,
and the results are summarized in Table 2.

Effect of joint multimodal video retriever. To validate the
efficacy of the joint multimodal video retriever, we designed two
variant models: (1)Uni Retriever: replacingmultimodal joint video
retriever with an unimodal retriever, performing text-to-text re-
trieval, and (2) w/o Retriever: removing the retriever entirely by
using random samples to replace the retrieved instances. The results
demonstrate that unimodal retrieval, limited to a single modality,
fails to capture the most relevant instances, leading to suboptimal
performance. Furthermore, completely removing the retrieval pro-
cess causes a substantial drop in performance, highlighting the
crucial role of high-quality retrieved instances. In contrast, our mul-
timodal joint video retriever, which incorporates information from
all three modalities, consistently improves the retrieval quality and
strengthens the overall framework performance.

Effect of contextual knowledge-augmented multimodal
experts. To analyze the impact of contextual knowledge equipped
to the modality experts, we design three variant models: (1) BHAN-
AttHat: removing the non-hateful attention from the BHAN, (2)
BHAN-AttNon: removing the hateful attention from the BHAN,
and (3) w/o BHAN: removing the BHAN entirely. The removal
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Table 3: Ablation study on multimodal experts within MoRE.
The best results are in black bold. A: Audio expert, T: Textual
expert, V: Visual expert.

HateMM MHClip-Y MHClip-B

Expert(s) ACC M-F1 ACC M-F1 ACC M-F1
{ A } 0.6451 0.5826 0.6521 0.5132 0.6497 0.4531
{ T } 0.7188 0.6972 0.7350 0.6765 0.7201 0.6880
{ V } 0.6866 0.6415 0.7002 0.5888 0.7150 0.6557
{ A, T } 0.7281 0.7004 0.7250 0.6491 0.7305 0.6614
{ A, V } 0.7373 0.6935 0.6651 0.4132 0.6850 0.5771
{ T, V } 0.8110 0.7954 0.7402 0.6739 0.7502 0.7252
MoRE 0.8341 0.8235 0.7750 0.7519 0.7850 0.7475
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Fig. 3: Visualization of modality experts contribution allo-
cation of MoRE across all three datasets. A: Audio expert, T:
Textual expert, V: Visual expert.

of each type of attention results in a notable performance drop,
highlighting the importance of integrating contextual knowledge
from both hateful and non-hateful relevant instances. Moreover,
eliminating the entire BHAN leads to a substantial performance
decline, underscoring the critical role of equipping modality experts
with contextual insights, which facilitates the experts to adapt the
ever-changing hate and improve their ability to distinguish the
subtle difference between content of hate and non-hate.

Effect of sample-sensitive integration network.We evaluate
the impact of the sample-sensitive integration network by designing
the variant model: w/o Router: replacing the router network with
a simple sum-based fusion method. The results indicate that equally
fusing the modalities fails to accurately detect hate in short videos.
In fact, the hateful content may manifest in different modalities,
which necessitates a flexible fusion approach, the sample-sensitive
integration network, to dynamically assign the modal contribution
for each short video instance.

4.2.2 Ablation Study on Multimodal Experts. The second ablation
study evaluates the contribution of each modality expert in detect-
ing hateful content. It employs various combinations of modality
experts in MoRE, with the results presented in Table 3. Based on
these results, we have the following observations:

(O1): Different modal experts have significantly different
impacts.Across all three datasets, we observe significant variability
in the impact of each expert. The textual expert consistently plays a
more crucial role in SVHD compared to the visual and audio experts,
with the audio expert contributing the least. This observation also
aligns with the distribution of hateful content across each modality
in the dataset, as exemplified by the MHClip-B dataset shown in
the blue donut chart of Fig. 1(b).

Table 4: Presentation of the retrieval quality. H: Hateful, N:
Non-hateful. “V /A / T” refers to the cosine similarity scores
between the target video and the retrieved videos across vi-
sual, audio, and textual modalities.

Target: H Top-1: H Top-1: N

Vision

Audio I’m a prostitute. I
don’t charge body
for sex. I give man
a way for free...

That is, I look like
a prostitute and I
am charging the
man for sex...

In Greek legend,
Phryne, famous
prostitute, the god
give the body...

Text I give a way for
free; I am a lady;
Mom called me a
prostitute...

I am a prostitute;
I am a lady of the
evening dropped
pants...

In Ancient Greek
Prostitute; famous
prostitute avoid
showing...

V /A / T N/A 0.75 / 0.93 / 0.90 0.81 / 0.89 / 0.87

(O2): Effectively combining all experts brings better perfor-
mance.We observe that combining multiple experts consistently
improves performance compared to using a single expert. In partic-
ular, combining textual and visual experts outperforms combining
audio with either modality expert, reinforcing the relative weakness
of the audio expert. Notably, our proposed MoRE effectively inte-
grates all three experts through the sample-sensitive integration
network to achieve optimal performance in SVHD.

To provide further insight into howMoRE leverages three modal-
ity experts, we present the average weight assigned by the router
network in MoRE to each expert across different datasets in Fig. 3.
The router consistently assigns the highest weight to the textual ex-
pert, followed by the visual expert, with the audio expert receiving
the lowest weight. It demonstrates that the router can effectively
adapt to the strengths of each expert, thereby providing an intuitive
explanation for the observed improvements in MoRE performance.

4.3 Retrieval Quality Presentation
To validate the effectiveness of the proposed joint multimodal video
retriever, we randomly select a hateful video from the test set of the
MHClip-Y dataset with the retrieved results. As illustrated in Ta-
ble 4, we observe that both hateful (H) and non-hateful (N) instances
exhibit similar backgrounds and subjects, specifically featuring a
woman speaking, which closely aligns with the target video’s vi-
sual information. Furthermore, the texts and audio transcriptions
of the retrieved instances show significant content overlap with
the target video, including keywords such as “prostitute”, “body”,
and “sex”. This observation underscores the efficacy of our mul-
timodal retrieval strategy, which seamlessly integrates all three
modalities to retrieve the most relevant instances. Notably, the
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Fig. 4: Generalizability between the baselines: HTMM,MHCL,
and our MoRE on the HateMM and MHClip-Y datasets

content within the text and audio transcriptions in retrieved in-
stances shares overlapping keywords with the target video, such
as “prostitute”. However, the hateful instance employs harmful and
offensive language (e.g., “charging”, “sex”, “lady”), in stark contrast
to the non-hateful instance, which engages in neutral discourse,
such as the historical story of the prostitute in “Ancient Greece”.
Consequently, by effectively learning the nuanced distinctions be-
tween hateful and non-hateful instances, the modality experts are
endowed with enhanced discriminative capabilities.

4.4 Model Generalizability
To investigate the generalizability of MoRE and two competitive
baseline models, particularly their ability to adapt to the new form
of hateful content, we conduct experiments where the models are
trained on one dataset and tested on the other. The HateMM and
MHClip-Y datasets are selected due to the significant differences in
their video content, stemming from their origins on entirely distinct
online platforms. In these experiments, the memory bank M of
MoRE is constructed using the training set of the target dataset.
Initially, the models are trained on HateMM and tested on MHClip-
Y, and subsequently, this setup is reversed to train on MHClip-Y
and test on HateMM. The results are presented in Fig. 4.

Both baseline models demonstrate extremely weak performance
when confronted with previously unseen hateful content, primarily
due to their lack of design for handling generalization. In contrast,
the proposed MoRE exhibits remarkable adaptability to these new
forms of hate, as it leverages contextual knowledge from retrieved
instances in the target dataset to enable the multimodal experts to
effectively detect “unencountered” hateful content. These findings
further confirm the superiority of MoRE in adapting to the evolving
nature of hate in short videos and its ability to meet real-world de-
mands by training on one platform and generalizing across multiple
platforms.

4.5 Case Study: Model Explainability
In this section, we explore the explainability of MoRE by conducting
a case study on two randomly selected hateful short videos from the
test set of the MHClip-Y dataset. This case study aims to elucidate
how MoRE adaptively assigns weights to multimodal experts to
achieve accurate predictions for different video samples.
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Fig. 5: Case study of the MoRE’s explainability on dynami-
cally assigning weights to modality experts for each video
instance. A: Audio expert, T: Textual expert, V: Visual expert.

The first case illustrated on the left in Fig. 5 involves a short video
where hateful content, specifically “anti-Semitic” and “Muslim”, is
presented solely in the audio modality. Our MoRE successfully cap-
tures the hateful evidence by prioritizing the audio expert, assigning
it the highest weight (64.1%). The second case is more challenging,
as neither the text nor audio contains hateful content. However,
some frames in video show a group of men dressed as Catholic
nuns mocking Christianity, which constitutes the hateful element.
In this instance, MoRE effectively allocates the highest contribution
(67.2%) to the visual expert, resulting in a correct identification of
the hateful content. In contrast, the baseline model MHCL, which
treats each modality equally, fails to detect the hateful content in
these cases, leading to incorrect prediction.

5 Conclusion
In this work, we propose a novel MoRE framework to address SVHD.
This multimodal framework leverages features from all modalities
to enhance the precision of SVHD. A multimodal joint video re-
triever is developed to identify the most relevant instances for the
target video. Multimodal experts gain contextual knowledge from
these retrieved hateful and non-hateful instances, enhancing their
ability to adapt to the dynamic evolution of hateful content. Addi-
tionally, a sample-sensitive integration network within MoRE adap-
tively adjusts the contributions of each expert based on different
samples, further improving performance in SVHD. Furthermore, an
end-to-end training paradigm is introduced to enhance the practical
applicability of MoRE in real-world large-scale SVHD applications.
Our extensive experiments conducted on three real-world datasets
demonstrate the effectiveness of the proposed MoRE for SVHD.
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A Additional Literature Review
A.1 Multimodal Retrieval
Multimodal retrieval aims to retrieve the most relevant instances
by leveraging information across different modalities, such as text,
vision, and audio. Previous studies have primarily focused on text-
image retrieval, with the objective of retrieving images that corre-
spond to a given text query or text that corresponds to a given image
query [23, 26, 35, 36, 51, 56]. These earlier studies typically relied
on models that did not employ pre-training, such as Convolutional
Neural Networks (CNNs) [23] and Faster R-CNN [56], to extract
representations from both image and text data. The introduction
of powerful vision-language pre-trained models [21, 30, 39, 44, 53]
has enabled researchers to develop methods that jointly encode
text and image representations for more accurate retrieval. These
models have demonstrated significant improvements in the quality
of text-image retrieval tasks. With the growing popularity of short
video content, video retrieval has become an increasingly important
area of study. Many studies in video retrieval have focused on text-
to-video retrieval, where a text query is used to retrieve relevant
video content from large video collections [11, 18, 19, 40]. These
approaches leverage pre-trained models to generate a common
embedding space, facilitating the alignment of video and text repre-
sentations. Despite advancements in text-to-video retrieval, limited
research addresses video-to-video retrieval, where the goal is to find
the most relevant video content given a video query. In this work,
we propose a novel joint multimodal video retriever that integrates
audio, textual, and visual modalities to enable comprehensive and
precise video-to-video retrieval.

A.2 Mixture of Experts
The Mixture of Experts (MoE) was first proposed by Jacob et al. [31]
as a method to combine multiple experts, each trained on differ-
ent subsets of data, into a single powerful model. Eigen et al. [22]
extended the MoE concept to neural networks by incorporating a
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Table 5: Characteristics of three short video datasets.

Dataset Characteristic HateMM MHClip-Y MHClip-B

Total Videos 1,083 1,000 1,000
Hateful Videos 431 82 128
Offensive Videos N/A 256 194
Non-Hateful Videos 652 662 678
Avg. Duration (s) 150.0 33.8 31.8
Languages English English Chinese
Platforms BitChute YouTube Bilibili

layer consisting of expert networks and a trainable gating mech-
anism. This gating mechanism assigns weights to the experts on
a per-example basis, enabling MoE to produce a weighted combi-
nation of the experts’ outputs. Recently, MoE has been extensively
studied as a technique to enhance the model’s capacity in terms
of parameter size without incurring additional computational cost,
particularly in the fields of natural language processing [24, 37, 59]
and computer vision [27, 43, 50, 57, 60]. Switch Transformer [24] de-
veloped a sparse MoE architecture that improves sample efficiency
in training by minimizing communication and computational over-
head, making it effective for natural language processing tasks. In
the multimodal learning domain, LIMoE [50] presented a sparse
MoE model that allows for the simultaneous processing of both
image and text using a contrastive loss during training. Much of
the current work primarily focuses on using the sparsity of MoE to
augment model parameters, overlooking one of the key strengths
of MoE: the ability to dynamically adjust outputs based on the in-
put data through expert routing. In contrast, our work first time
introduces MoE into the task of video-based hate detection by de-
signing contextual knowledge-augmented multimodal experts to
tackle different modalities of the short video. Furthermore, a sample-
sensitive integration network is proposed to identify the specific
contributions of each modality expert’s features to hate detection
in each video.

B Feature Extraction
For the short video 𝑆𝑖 , we start by extracting its initial informa-
tion from each modality. Specifically, we isolate the audio com-
ponent from the video, resulting in the audio representation 𝑠𝑎

𝑖
.

Additionally, we uniformly sample𝑚 key frames from the video,
which contribute to the visual content information denoted as
𝑠𝑣
𝑖
= {v1

𝑖
, v2
𝑖
, . . . , v𝑚

𝑖
}. The textual information 𝑠𝑡

𝑖
incorporates the

title and description of the short video 𝑆𝑖 .
To ensure alignment with prior research [14, 63] for fair compar-

ison, we utilize the pre-trained BERT [17] and ViT [20] as textual
and visual feature extractors. This allows us to derive the text fea-
tures xt

𝑖
∈ R𝑛×𝑑𝑡 and visual features xv

𝑖
∈ R𝑚×𝑑𝑣 , where 𝑛 is the

number of word tokens, while 𝑑𝑡 and 𝑑𝑣 denote the dimensions of
the textual and visual embeddings, respectively. Specifically, the
visual embedding for each key frame is derived from the classifi-
cation token in the last hidden states of the Vision Transformer
(ViT), which serves as the global representation of the frame. For
audio feature extraction, we compute the Mel Frequency Cepstral
Coefficients (MFCC), resulting in audio features xa

𝑖
∈ R𝑙×𝑑𝑎 , where

𝑙 denotes the number of audio frames, and𝑑𝑎 represents the number
of MFCC coefficients extracted from each audio frame.

C Detailed Experimental Settings
C.1 Datasets
We conduct comprehensive experiments to evaluate the perfor-
mance of the proposed MoRE framework compared to baseline
models on three real-world short video datasets: HateMM [14],
MultiHateClip-YouTube (MHClip-Y), and MultiHateClip-Bilibili
(MHClip-B) [63]. The characteristics of these datasets are outlined
in terms of the total number of videos, the counts of hateful and
offensive videos, non-hateful videos, average video duration, lan-
guages, and the platforms from which the videos were sourced, as
shown in Table 5.
• HateMM: This dataset is a hateful video detection dataset, col-
lected from BitChute, an alternative video-sharing platform with
minimal content moderation. The English-language videos were
manually annotated by trained annotators. Each entry contains
the full video, and hate/non-hate label, with additional anno-
tations including frame spans indicating hateful content and
targeted communities.

• MHClip-Y, MHClip-B: These two datasets are benchmark
datasets designed for hateful video detection on YouTube and
Bilibili, respectively. Each entry in these two datasets includes the
video, its title, transcript, and detailed annotations. The annota-
tions provide rich information, including the video’s classification
(hateful, offensive, or non-hateful), specific hateful/offensive seg-
ments with timestamps, the target victim group (e.g., Woman,
Man, LGBTQ+), and the contributing modalities (audio, textual,
and visual).
Notably, we present the binary classification experimental re-

sults in the main paper by merging the “offensive” and “hateful”
categories into a single “hateful” class.

C.2 Baselines
To validate the efficacy of MoRE, we compare our framework with
competitive baseline models, which can be classified into three
distinct groups: (1) Unimodal hate detection methods; (2) Multi-
modal hate detection methods; and (3) Large Vision-Language Model
(LVLM)-based methods. Below, we provide detailed descriptions of
each baseline.
(1) Unimodal hate detection methods:
• BERT [17]: Given the efficacy of BERT in hate speech detec-
tion [48], we employ BERT as a competitive unimodal baseline.
The text data, including the video title, description, and audio
transcription, is passed through BERT to extract features (i.e.,
the [CLS] token) represented in a 768-dimensional space. These
features are subsequently fed into two fully connected (FC) layers
to yield the final prediction results.

• ViViT [3]: The Video Vision Transformer is the video version
of ViT [20], which is effective in video understanding and classi-
fication [55, 72]. We utilize ViViT to extract a 768-dimensional
feature vector from 32 sampled frames for each video. The fea-
tures are then input into two FC layers to generate the final
output.
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Table 6: Example of prompt for hateful detection applied in
LVLM-based methods.

Prompt: Now your task is to determine whether a short video
is hateful or non-hateful based on its title, description, audio
transcription and raw video content. If the video is hateful,
output 1; otherwise, output 0.
Video Title: { Title }
Video Description: { Description }
Audio Transcription: { Transcription }
Raw Video Content: { Raw video content (in MP4 format) }
Now give your prediction (no need analysis, return 0 or 1 only).

• MFCC: MFCC plays a pivotal role in audio signal processing
and has been widely used in audio classification [4, 62]. For each
video, we generate a 128-dimensional MFCC vector, which is
then processed through two fully connected (FC) layers to obtain
the final prediction results.

(2) Multimodal hate detection methods:
• Pro-Cap [7]: Pro-Cap utilizes prompting techniques to guide
pre-trained vision-language models in generating image cap-
tions associated with hateful content. It subsequently combines
these generated captions with textual information to enhance
the detection of hateful memes.

• HTMM [14]: HTMM extracts features from transcripts, video
frames, and audio frames. These features are then concatenated
and input into an MLP-based classifier to detect hateful content
in short videos.

• MHCL [63]: MHCL analyzes the significance of each modality in
the detection of hateful content within videos. It then leverages
the audio, textual, and visual features with LSTM-based feature
encoders to perform hateful video detection.

(3) LVLM-based methods:
• MiniCPM-V [70]: MiniCPM-V is a series of end-to-end VLLMs
designed for vision-language understanding. These models ac-
cept text, images, and videos as inputs, generating high-quality
text outputs. In this study, we adopt the latest and most advanced
model in the MiniCPM-V series, MiniCPM-V 2.6, as our competi-
tive baseline.

• LLaVA-OV [38]: LLaVA-OneVision (LLaVA-OV) is the newest
family of open MLLMs in the LLaVA series, which achieves new
state-of-the-art performance across single-image, multi-image,
and video benchmarks.

• Qwen2-VL [64]: Qwen2-VL is the latest version of the vision
language models in the Qwen model families. Qwen2-VL has
the abilities of complex reasoning and decision making and

achieves state-of-the-art performance on visual understanding
benchmarks.
Notably, for LVLM-based methods, we provide the text and raw

video content along with a specifically designed prompt to guide
the output generation. An example of the prompt is presented in
Table 6.

C.3 Implementation Details
In this section, we provide detailed implementation specifications
for our proposed MoRE along with a comprehensive overview of
the experimental setup.
• Data processing.We uniformly extract 16 key frames from each
short video across all datasets to ensure consistent visual repre-
sentation. To extract audio features, we employ the open-source
library Librosa to compute the MFCC. For audio transcription, we
employ two versions of the pre-trained Whisper [54] automatic
speech recognition model, each separately fine-tuned for Chinese
and English audio. To generate descriptions of the video content,
we employ the pre-trained BLIP2 model, specifically the opt-2.7b
version, to caption the extracted key frames. Additionally, we
apply a chotomous image segmentation model IS-Net [52] fine-
tuned in background removal task to separate the background
from the subjects in the key frames.

• Details of memory bank construction. In this work, the mem-
ory bank B is composed of short videos from the training and
validation sets, thereby preventing data leakage during model
testing. However, in real-world applications, the memory bank
must be continuously updated to reflect temporal changes, en-
suring that the model can adapt to the rapidly evolving nature
of hateful content.

• Training configuration.During the retrieval, the default weight
for each modality is set to equal. For text, we set the maximum
sequence length to 512 for all datasets. For key frames, we resize
the images into 224 × 224. The number of retrieved hateful videos
𝐾 and non-hateful videos 𝐿 are selected from the set {10, 20, 30,
40, 50}, respectively. And the bipolar attention balancing ratio 𝛼
is chosen from the range [0, 1]. The positive constant 𝛿 in end-to-
end training is set to 0.2. We utilize the AdamW [42] optimizer
with a learning rate of 5×10−4 and a weight decay of 5×10−5 for
model parameters optimization. We set the random seed to 2024.
For statistical testing, where each model is run five times, we use
random seeds ranging from 2024 to 2028 and report the mean
value as experimental results. For baseline models, we strictly
adhere to the settings specified in their original papers.

• Implementation environment. All experiments are conducted
on a system equipped with an Intel(R) Core(TM) i9-14900KF
processor, an NVIDIA GeForce RTX 4090 GPU with 24 GB of
VRAM, and 128 GB of system RAM.
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