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Abstract
Traditional multimodal learning approaches often assume that all
modalities are available during both the training and inference
phases. However, this assumption is often impractical in real-world
scenarios due to challenges such as sensor failures, data corruption,
or privacy concerns. While recent efforts focus on enhancing the
robustness of pre-trained Multimodal Transformers (MTs) under
missing modality conditions, mainstream work in this field often
overlook reconstructing the missing modalities and rely on static,
sample-agnostic prompt-tuning techniques, undermining their effi-
cacy in severe modality missing scenarios. To address these limita-
tions, we proposeREDEEM, a novelREtrieval-guiDEd conditional
gEnerative fraMework that largely alleviates the modality missing
problems on pre-trained MTs. REDEEM consists of a new adap-
tive retrieval mechanism to identify relevant instances for both
modality-complete and -incomplete samples. It then conditions
on the remaining modalities and utilizes the retrieved data as ex-
perts to effectively recover the missing ones in modality-incomplete
instances through a within-modal reconstruction manner. Finally,
REDEEM generates sample-aware inter-modal prompts from the re-
trieved instances to guide MTs in tackling severe modality missing
challenges. Comprehensive experiments on three diverse multi-
modal classification benchmarks demonstrate that REDEEM signif-
icantly outperforms competitive baselines.
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1 Introduction
Multimodal learning has garnered significant attention in both
research and industry communities across various domains, in-
cluding medical service [13, 14], autonomous driving [22, 34], and
malicious content detection [4, 48]. Traditional multimodal learning
approaches often implicitly assume that all modalities are available
during training and inference. However, real-world applications
often face the challenge of modality missing due to sensor failures,
data corruption, or privacy concerns [21, 26]. These missing modal-
ities can substantially curtail the performance and robustness of
traditional multimodal models, even those Multimodal Transform-
ers (MTs) [1, 29, 30] pre-trained on large corpora.

Recently, as the MTs have become the popular and dominant
method in multimodal learning across various tasks, such as text-
image retrieval and video generation [10, 31, 49], researchers have
focused on enhancing the robustness of pre-trained MTs under
modality missing conditions [12, 18, 25]. For instance, AMTR [25]
adopts multi-task optimization and policy-based fusion in MTs
to tackle modality-missing challenges, while prevailing methods
MAPs [18] and MSPs [12] leverage prompt tuning to improve the
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Figure 1: Prior MT-based methods (Zero Pad & Static Prompt-
ing) vs. REDEEM (Within-Modal Conditional Completion &
Sample-Aware Inter-Modal Prompting) in image-only case.

pre-trained MTs’ performance in such conditions without fine-
tuning the entire framework.

However, these mainstreamMT-based methods often fill missing
modalities by padding dummy values (e.g., zeros) without any re-
construction and rely on static, sample-agnostic prompts, as shown
in Figure 1(a). As a result, there are two major limitations that
lie in these methods: (i) Since pre-trained MTs lack exposure to
modality missing scenarios during pre-training, they may struggle
to interpret dummy values that easily introduce noise and instabil-
ity [8, 25]. (ii) Static, sample-agnostic prompts fall short in adapt-
ing to every sample, offering limited applicability particularly in
datasets containing a mix of modality-complete and -incomplete in-
stances [5, 46]. The increased variability in such datasets amplifies
distributional diversity, further restricting these static prompts to
guide pre-trained MTs in addressing modality missing challenges.

To address these issues, we proposeREDEEM, a novelREtrieval-
guiDEd conditional gEnerative fraMework, as illustrated in Fig-
ure 1(b). Inspired by the notion that modality-missing results in
information loss, REDEEM enhances informational completeness
by incorporating relevant data through retrieval mechanisms. This
retrieval-guided conditional generation paradigm facilitates both
the conditional completion of missing modalities and generation of
inter-modal dynamic prompts for specific samples, enhancing the
robustness of MTs without fine-tuning the whole framework.

To address issue (i), we propose to recover missing content by
leveraging both the remaining modalities and retrieved information,
ensuring more robust multimodal inputs for pre-trained MTs. To
achieve this, we first design a new Missing Self-Adaptive Retriever
that dynamically adjusts its retrieval strategy based on specific
modality missing scenarios and leverages the available modalities
to perform effective within-modal retrieval. Subsequently, unlike
traditional reconstruction methods [26, 41], which often generate
the missing modalities merely through the available ones and thus
introduce modality heterogeneity issues [37, 39], we propose a
novel Conditional Mixture of Experts Generator for within-modal
reconstruction. Specifically, for a missing modality, the generator
identifies a set of within-modal experts from the retrieved data
with the same modality as the missing one. A carefully designed
router then conditions on the interplay between the experts and
the remaining modalities, adaptively modulating the contribution
of each expert in the reconstruction process and aggregating these
within-modal experts to accurately recover the missing content.

Drawing the inspiration of few-shot learning in MTs [28, 47],
which leverages a few contextual examples to adapt MTs to specific
situations, we propose a fresh Sample-Aware Inter-Modal Prompter
to address issue (ii). This prompter generates instance-specific,
dynamic prompts by extracting informative cross-modal patterns
from retrieved modality-complete samples (i.e., image-text pairs).
By excavating the inter-modal relationships embedded in these
target-relevant instances, the prompter provides MTs with fine-
grained cross-modal cues, enabling MTs to understand the corre-
spondence between modalities and robustly handle both complete
and incomplete data. Our contributions are summarized as follows:

• We propose REDEEM, a novel framework that pioneers a
retrieval-guided conditional generation paradigm for both
missing modality recovery and prompt generation. It can
effectively enhance the performance and robustness of MTs
under severe modality missing challenges.

• We design a new Conditional Mixture of Experts Genera-
tor to realize within-modal reconstruction. This generator
leverages the remaining modalities as conditions to guide
the within-modal experts – retrieved data corresponding to
the same modality as the missing one – to effectively recover
the missing modalities.

• We develop a fresh Sample-Aware Inter-Modal Prompter
that extracts inter-modal relationships from target-relevant
modality-complete data, yielding dynamic prompts. These
tailored prompts explicitly deliver sample-specific and cross-
modal cues, largely enhance the robustness of pre-trained
MTs in tackling severe modality missing scenarios.

Extensive experiments on three diverse benchmarks demonstrate
that REDEEM outperforms state-of-the-art baselines in handling
modality missing scenarios. The source codes to reproduce our
results are available at https://github.com/Jian-Lang/REDEEM.

2 Related Work
2.1 Incomplete Multimodal Learning
Traditional multimodal methods often assume full modalities and
struggle with incomplete data, leading to inaccurate or misleading
decisions [1, 29, 30]. This limitation undermines the reliability and
applicability of these methods in risk-sensitive scenarios, e.g., au-
tonomous driving [22, 34], medical service [13, 14], and malicious
content detection [4, 48]. To address this issue, researchers designed
various methods that are broadly divided into three groups.

The first group of methods, referred to as modality invariant
learning, primarily extracts inter-modal correlations to project mul-
timodal features into a shared space and leverages the shared fea-
tures for prediction. IF-MMIN [50], ShaSpec [36], DrFuse [43], Cor-
rKD [21], and MoMKE [42] employed customized learning strate-
gies (e.g., knowledge distillation, mixture of experts) to capture
modality-invariant features across different modalities, thereby en-
hancing the robustness of missing multimodal learning. However,
these methods simply fill incomplete inputs with dummy values,
which introduces additional noise and causes unexpected behavior.

In contrast, cross-modal imputation methods aim to reconstruct
missing modalities from the remaining available modalities with
generative models [3, 26, 41, 45]. SMIL [26] and AcMAE [41] lever-
aged a general-purpose autoencoder to impute missing modalities

https://github.com/Jian-Lang/REDEEM
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based on available modalities. TFR-Net [45] employed cross-modal
attention mechanisms to generate representations for the missing
modalities. However, these methods struggle with complex inter-
modal relationships and modal distribution heterogeneity [37, 39],
limiting the accuracy of recovered content.

With the rapid proliferation of MTs across various domains,
a third category of approaches has emerged—MT-based methods-
aimed at enhancing the robustness of pre-trained MTs in situa-
tions with missing modalities. Mainstream work MAPs [18] and
MSPs [12] proposed to insert prompts at various layers within
MTs to handle incomplete modalities without optimizing the en-
tire framework. However, these MT-based methods are limited by
the use of dummy values and static prompts. A very recent work,
dubbed RAGPT [17], attempted to alleviate their limitations by sim-
ply averaging the retrieved modalities and utilizing the intra-modal
prompting. Nevertheless, it struggles to accurately recover the miss-
ing modalities and overlooks what MTs actually “require” under
severe modality-missing scenarios (i.e., the correct cross-modal pat-
terns). In contrast, our Conditional Mixture of Experts Generator
(CMoE Generator) explicitly conditions on the available modalities
to guide the fine-grained aggregation of retrieved experts, enabling
more accurate reconstruction of the missing modalities. Moreover,
the Sample-Aware Inter-Modal Prompter (SAIM Prompter) effec-
tively distills the cross-modal patterns from abundant retrieved
modality-complete samples into dynamic prompts.

2.2 Mixture of Experts
The MoE was first introduced by Jacob et al.[11] as a method to
integrate multiple experts, each trained on distinct subsets of data,
into a unified, robust model. Eigen et al.[6] extended this concept to
neural networks by designing a layer comprising expert networks
and a trainable gating mechanism. This gating mechanism assigns
weights to the experts on a per-sample basis, enablingMoE to gener-
ate weighted combinations of expert outputs dynamically. Recently,
MoE has gained significant attention for its ability to expand model
capacity without increasing computational costs [32], particularly
in Natural Language Processing (NLP) [7, 19, 44] and Computer
Vision (CV) [9, 27, 33, 42]. In multimodal learning, VL-MoE [33]
explored the effectiveness of MoE in scaling vision-language mod-
els and investigated the trade-offs between model complexity and
performance. In this work, we are the first to apply MoE for missing
content recovery. By conditioning on the available modalities, our
Conditional MoE Generator (CMoE Generator) dynamically priori-
tizes the experts—retrieved data of the samemodality as the missing
one—through a well-designed Conditional Soft Router. This router
assigns higher importance to experts aligned with the reconstruc-
tion objectives while reducing the contributions of less relevant
experts, enabling an effective within-modal reconstruction.

2.3 Prompt Tuning
Prompt tuning [23] utilizes a small number of learnable prompt
parameters added to the pre-trained transformers, facilitating ad-
justments to the pre-trained models for alignment with down-
stream tasks. For incomplete modality learning, mainstream studies
MAPs [18] and MSPs [12] introduced prompts strategically inserted
at various layers within MTs to address incomplete modalities.

However, their static, instance-agnostic prompts may not adapt
effectively to different samples, particularly in datasets containing
both modality-complete and modality-incomplete instances. The
significant variability across samples under missing modality sce-
narios largely diminishes the effectiveness of these approaches. The
just-released work RAGPT [17] leverage the retrieved instances to
construct the intra-modal prompts. Nevertheless, it fails to guide
the MTs in understanding the cross-modal relationships, which
confines its effectiveness under severe missing modality condi-
tions. In contrast, our Sample-Aware Inter-Modal Prompter (SAIM
Prompter) generates inter-modal dynamic prompts from retrieved
samples. These prompts act as few-shot exemplars, enabling the
MTs to better capture the correspondence between text and image
modalities within target-relevant modality-complete data, signifi-
cantly improving MTs’ robustness in handling missing modalities.

3 Methodology
3.1 Overview
In this section, we describe the proposed REDEEM in detail. The
overall framework of our REDEEM is illustrated in Figure 2. We
first provide the preliminaries for the incomplete modality learning
problem. The subsequent subsections provide in-depth descrip-
tions of the key components of REDEEM: the missing self-adaptive
retriever, the conditional mixture of experts generator, and the
sample-aware inter-modal prompter. The final subsection provides
a complete workflow for classifying a modality-incomplete sample.
Problem Definition. Following the prior works [12, 18, 25], we
consider a multimodal dataset with two modalities: text and image.
Formally, we define themultimodal dataset asD = {D𝑐 ,D𝑚1 ,D𝑚2 }.
Then,D𝑐 = {(T𝑗 ,I𝑗 , 𝑦 𝑗 )}𝑁

𝑐

𝑗=1 is themodality-complete subset, where
𝑦 𝑗 is the category of the 𝑗-th instance. T𝑗 and I𝑗 denote text and im-
age modalities, respectively. 𝑁𝑐 is the total number of instances in
D𝑐 . In contrast, D𝑚1 = {(T𝑘 , 𝑦𝑘 )}𝑁

𝑚1
𝑘=1 and D𝑚2 = {(I𝑛, 𝑦𝑛)}𝑁

𝑚2
𝑛=1

represent the modality-incomplete subsets. The objective of this
task is to improve the performance of models in the scenarios where
modality-missing occurs in both training and inference phases.

3.2 Missing Self-Adaptive Retriever
In the context of incomplete modality learning, the target instance
may be either modality-complete or missing certain modalities (e.g.,
missing text or image). To ensure effective retrieval in both cases,
we propose a Missing Self-Adaptive Retriever (MSA Retriever),
which dynamically switches its retrieval mechanism to fully utilize
the currently available modalities to perform effective retrieval.

3.2.1 Missing Self-Adaptive Retrieval. For a modality-complete in-
stance 𝑆 , we first encode its text T and image I to query vectors
through pre-trained text and vision encoders. Specifically, we em-
ploy the CLIP [31] text encoder to encode the T , yielding the text
query vector Ψ𝑡 (T ) ∈ R𝑑𝑡 , where 𝑑𝑡 is the dimension of text modal-
ity. Similarly, we leverage the CLIP vision encoder to process the
image modality and generate the image query vector Ψ𝑣 (I) ∈ R𝑑𝑣 .
Subsequently, we combine both modalities from the instance 𝑆 to
perform a joint within-modal retrieval through our MSA Retriever.
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Figure 2: Overall framework of REDEEM. (1) The MSA Retriever identifies similar samples for the target image-only instance;
(2) The CMoE Generator recovers the missing text through a within-modal conditional reconstruction; (3) The SAIM Prompter
utilizes the retrieved instances to generate the sample-aware inter-modal prompts; (4) The recovered text and prompts are fed
into the pre-trained MT with the remaining image modality to predict the result.

This process can be written as:

S𝑟 = Top-𝐾
𝑏∈M

( Ψ𝑡 (T )⊤Ψ𝑡 (T𝑏 )
∥Ψ𝑡 (T )∥∥Ψ𝑡 (T𝑏 )∥

+ Ψ𝑣 (I)⊤Ψ𝑣 (I𝑏 )
∥Ψ𝑣 (I)∥∥Ψ𝑣 (I𝑏 )∥

), (1)

whereS𝑟 = {𝑆𝑟1 , 𝑆𝑟2 , · · · , 𝑆𝑟𝐾 } denotes the top-𝐾 retrievedmodality-
complete instances, M is the memory bank which stores (image,
text) tuples. For modality-incomplete target instances, MSA Re-
triever can flexibly switch the retrieval mechanism to adapt any
missing case by only employing the remaining available modality
as query to perform the within-modal retrieval.

The features from the top-𝐾 retrieved instances S𝑟 provide addi-
tional contextual information, guiding the recovery of the missing
content for the target modality-incomplete instance and the gener-
ation of the sample-aware dynamic prompts.

3.3 Conditional Mixture of Experts Generator
PriorMT-basedmethods andmodality invariant learning approaches
simply leverage dummy values (e.g., zeros) to pad the missing con-
tent, which overlooks recovering the missing content and thus
introduces unpredictable noise. In contrast, we introduce a Condi-
tional Mixture of Experts Generator (CMoE Generator), which first
conditions on the remaining modalities and weightily aggregates
the within-modal experts (i.e., retrieved instances with the same
modality as the missing one) to reconstruct the missing content.
This generator realizes a within-modal reconstruction that effec-
tively resolves the heterogeneity issues in cross-modal imputation.

3.3.1 Conditional Soft Router Network. In the CMoE Generator,
we first define within-modal experts as data from the retrieved
instances that match the same modality as the missing one. Condi-
tioning on the remaining modality in the target instance, we design
a Conditional Soft Router (CSR) network to facilitate interactions
between the remaining modality and these experts, assigning each
expert a role in the reconstruction process by generating routing

scores based on their assessed contribution. This conditional rout-
ing enables dynamic prioritization of experts, ensuring that those
most aligned with the reconstruction objectives are emphasized,
while the weights of less relevant experts are accordingly reduced.

Specifically, for an image-only target instance 𝑆 , we aim to re-
cover its text modality using the remaining image modality I
and a set of retrieved text modality data (i.e., within-modal ex-
perts) T𝑟 = {T𝑟1 ,T𝑟2 , . . . ,T𝑟𝐾 }. The CMoE Generator first applies
the frozen embedding layers from the MT to convert both the image
and retrieved text data into embeddings, resulting in the image em-
bedding E𝑖 ∈ R𝑛×𝑑 and retrieved text embeddings E𝑡𝑟 = {E𝑡𝑟𝑖 }

𝐾
𝑖=1 ∈

R𝐾×𝑚×𝑑 , where𝑛 and𝑚 are the number of image patches and word
tokens, respectively. Subsequently, a pooling strategy is applied to
these embeddings to reduce the sequence length, yielding Ẽ𝑖 ∈ R𝑑

and Ẽ𝑡𝑟 = {Ẽ𝑡𝑟𝑖 }
𝐾
𝑖=1 ∈ R𝐾×𝑑 .

To compute the routing scores, we design the CSR network
to utilize the remaining modality to interact with each within-
modal expert, generating the weights that determine each expert’s
contribution in completing the missing modality:

CSR
(
Ẽ𝑖 , Ẽ𝑡𝑟𝑘

)
=

1
√
𝑑

(
Ẽ𝑖W1

) (
Ẽ𝑡𝑟𝑘W2

)⊤
, (2)

whereW1 andW2 are learnable projection matrices, and 𝑑 is the
embedding dimensionality. Finally, the softmax operation is adopted
to generate the normalized routing scores:

𝑤𝑘 =

exp
(
CSR

(
Ẽ𝑖 , Ẽ𝑡𝑟𝑘

))
∑𝐾
𝑗=1 exp

(
CSR

(
Ẽ𝑖 , Ẽ𝑡𝑟 𝑗

)) , (3)

where𝑤𝑘 is the routing score assigned to the 𝑘-th expert, reflecting
its relative importance in recovering the missing text modality for
instance 𝑆 .

3.3.2 Within-Modal Conditional Reconstruction. With the routing
scores 𝒘 = [𝑤1,𝑤2, . . . ,𝑤𝐾 ], the CMoE Generator first exerts a
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set of Feed-Forward Networks (FFNs) to each expert’s embedding,
and aggregates the expert-specific outputs by the routing scores to
generate the missing text modality:

Ê𝑡 =
𝐾∑︁
𝑘=1

𝑤𝑘 · FFN𝑘 (E𝑡𝑟𝑘 ), (4)

where Ê𝑡 ∈ R𝑚×𝑑 denotes the reconstructed embedding of the miss-
ing text modality for target instance 𝑆 . Theway to recover the image
modality follows the same manner. This within-modal conditional
reconstruction strategy offers a semantics- and distribution-aligned
recovery of the missing content, providing more robust multimodal
inputs for pre-trained MTs.

3.4 Sample-Aware Inter-Modal Prompter
Prior MT-based methods [12, 18] often rely on static prompts to
guide the MT in addressing modality-missing challenges. However,
these prompts are sample-agnostic and not optimal for every sam-
ple, especially when handling datasets with the mixture of modality-
complete and -incomplete instances. To address this, we propose
a Sample-Aware Inter-Modal Prompter (SAIM Prompter). By ex-
tracting inter-modal informative patterns from modality-complete
instances similar to the target, our prompter generates sample-
specific dynamic prompts that aid the MT in understanding text-
image correspondences present in these samples.

Given an instance 𝑆 , the SAIM Prompter generates both text
and image prompts by extracting cross-modal relationships from
retrieved modality-complete instances similar to 𝑆 . Specifically, for
text prompts, the SAIM Prompter applies cross-modal attention [40]
by utilizing the retrieved image embeddings E𝑖𝑟 as query and the
retrieved text embeddings E𝑡𝑟 as key and value:

P𝑡 = Pool(CrossAttn(𝑓𝑄 (E𝑖𝑟 ), 𝑓𝐾 (E𝑡𝑟 ), 𝑓𝑉 (E𝑡𝑟 ))), (5)

CrossAttn(Q,K,V) = Softmax
(
QK𝑇
√
𝑑

)
V, (6)

where Pool is the adaptive pooling operation, 𝑓𝑄 , 𝑓𝐾 , and 𝑓𝑉 denote
the linear mapping functions, P𝑡 ∈ R𝑏×𝑑 represents the text prompt,
and 𝑏 is the prompt length. Similarly, the image prompt P𝑖 ∈ R𝑏×𝑑

can be obtained in the same manner. These prompts act as few-
shot examples, guiding the MT to understand the cross-modal re-
lationship from the target-relevant complete data, enhancing the
robustness of MT in tackling incomplete modality problems.

3.5 Prediction
The model prediction process unfolds as follows. For an image-
only instance 𝑆 , we first retrieve its top-𝐾 most relevant modality-
complete instances S𝑟 by the MSA Retriever, recovering its text
embedding Ê𝑡 via the CMoE Generator and feeding both image and
reconstructed text embeddings into MT. Subsequently, the prompts
P𝑖 and P𝑡 are generated through the SAIM Prompter and inserted
into the 𝑙-th layer of MT for prompt-tuning:

H𝑙 = [P𝑖 , P𝑡 ,H𝑖
𝑙
,H𝑡
𝑙
], (7)

where 𝑙 ∈ [0, 𝐿], H𝑙 represents the input features to the 𝑙-th layer
of the MT, H𝑖

𝑙
and H𝑡

𝑙
denote the hidden representations of image

and text modalities input to 𝑙-th layer, with H𝑖0 and H𝑡0 initialized
as E𝑖 and Ẽ𝑡 , respectively.

The features from the last layer of the MT are fed into a pooler
layer, followed by a classification layer, yielding the final output
𝑦. For text-only or modality-complete instances, the generation
of classification results follows a similar process. During training,
all MT parameters remain frozen, and only the CMoE Generator
and SAIM Prompter, which comprise a relatively small number
of parameters, are updated. The framework is optimized using a
combination of Cross-Entropy loss and reconstruction loss (i.e.,
mean square error loss).

4 Experiments
4.1 Experimental Setup
A concise summary of the experimental settings is outlined be-
low, with detailed descriptions regarding datasets, baselines, and
implementation available in the Appendix A.
Datasets. Following prior works [12, 18], we evaluate our RE-
DEEM on three diverse multimodal downstream datasets: (1) MM-
IMDb [2], a movie genre classification dataset involving both image
and text modalities. Given that each movie may belong to multiple
genres, the task is a multi-label classification. (2) HateMemes [15],
a challenging multimodal dataset designed to identify hate within
memes using image and text modalities. (3) Food101 [38], a food
classification dataset containing noisy image-text pairs with 101
categories, sourced from Google Image Search. Detailed dataset
statistics are provided in Table 2. The splits for each dataset are
consistent with the original paper.
Baselines.We compare our REDEEMwith 11 competitive baselines,
which are roughly grouped into three categories: (1) Modality in-
variant learning methods: IF-MMIN [50], ShaSpec [36], DrFuse [43],
CorrKD [21], and MoMKE [42]. (2) Cross-modal imputation methods:
SMIL [26], TFR-Net [45], and AcMAE [41].(3) MT-based methods:
MAPs [18], MSPs [12], RAGPT [17].
Metrics. Following prior works [12, 18], we adopt appropriate met-
rics for each dataset. For MM-IMDb, we use F1-Micro (F1-M) and
F1-Samples (F1-S) to assess multi-label classification performance.
For Hateful Memes, we utilize the Area Under the Receiver Operat-
ing Characteristic Curve (AUROC) as the metric. For Food101, we
employ classification accuracy (ACC).
Setting of Missing Modality. Following prior work [17], we as-
sume training set is fully available and define the missing rate
𝜂% as the rate of modality-incomplete samples in the test set: (1)
text/image missing with 𝜂% indicates that there are 𝜂% image-
only/text-only instances and (1-𝜂%) modality-complete instances.
(2) both modalities missing with 𝜂% indicates that there are 𝜂

2%
text-only instances, 𝜂2% image-only instances and (1-𝜂%) modality-
complete instances. We set missing rate 𝜂% = 70% by default. For
training of each model, we simulate the same 70% missing rate to
align model optimization well with test conditions, but allow each
model to access the full modality information in the training set.
Implementation Details. In this study, following prior MT-based
works [12, 17, 18, 25], we employ the pre-trained ViLT [16] as our
MT backbone. However, REDEEM is a model-agnostic framework
that can be seamlessly adapted to a wide range of MT architectures,
and we also evaluate the effectiveness of REDEEM on additional MT



KDD ’25, August 3–7, 2025, Toronto, ON, Canada Jian Lang et al.

Table 1: Performance comparison on three datasets with a 70% missing rate across various missing-modality scenarios. The best
results are in red bold and the second black bold. Higher values of F1-M, F1-S, AUROC, and ACC indicate better performance.

MM-IMDb HateMemes Food101

Missing Type Text Image Both Text Image Both Text Image Both

Methods F1-M F1-S F1-M F1-S F1-M F1-S AUROC AUROC AUROC ACC ACC ACC

IF-MMIN 39.63 38.10 31.95 26.89 31.98 29.33 57.62 53.44 55.19 66.76 64.36 68.53
ShaSpec 44.04 42.05 44.23 42.53 44.06 42.13 58.75 60.30 60.96 60.99 74.87 70.02
DrFuse 47.05 45.22 43.58 42.19 48.83 47.15 57.60 60.66 55.84 66.30 75.09 68.23
CorrKD 44.82 45.27 39.48 39.11 41.20 40.51 58.74 55.59 57.91 61.37 66.83 62.87
MoMKE 50.98 50.06 45.67 44.28 46.99 45.30 63.08 61.35 62.53 66.85 68.40 67.38
SMIL 38.32 38.55 27.57 35.27 35.12 31.87 50.32 58.50 54.63 61.83 58.86 60.77
TFR-Net 37.70 38.82 38.14 39.45 37.24 38.11 51.18 55.57 52.12 65.91 67.58 63.41
AcMAE 47.47 46.73 43.82 42.20 44.05 43.75 55.74 59.66 57.25 69.28 73.75 71.15
MAPs 46.12 45.47 44.86 43.19 45.48 44.30 58.62 60.16 58.89 67.02 75.62 72.52
MSPs 49.16 48.81 44.62 43.06 48.28 46.71 59.60 60.05 59.08 71.74 79.09 74.46
RAGPT 55.16 55.00 46.44 45.12 50.89 50.22 64.10 62.57 63.47 75.53 81.98 76.94
REDEEM 59.94 58.50 49.54 49.51 51.49 50.93 71.45 64.30 67.02 79.81 83.71 78.65
Improv. (%) 8.67↑ 6.36↑ 6.68↑ 9.73↑ 1.18↑ 1.41↑ 11.47↑ 2.76↑ 5.59↑ 5.67↑ 2.11↑ 2.22↑
p-val. 3.86𝑒−6 2.02𝑒−6 2.29𝑒−5 4.81𝑒−5 4.49𝑒−4 1.82𝑒−5 4.98𝑒−7 1.89𝑒−5 9.17𝑒−6 1.05𝑒−7 1.09𝑒−8 6.81𝑒−6

Table 2: Statistics of three multimodal downstream datasets.

Dataset # Image # Text # Train # Val # Test

MM-IMDb 25,959 25,959 15,552 2,608 7,799
HateMemes 10,000 10,000 8,500 500 1,500
Food101 90,688 90,688 67,972 - 22,716

backbones in Section 4.9. To avoid heavy overhead, all parameters
in the ViLT remain frozen, and only the proposed CMoE Generator,
SAIM Prompter, and downstream task-specific parameters (e.g.,
pooler and classifier) are trained. For pair comparison, the mem-
ory bank M for each task is constructed with the corresponding
training and validation set without test data leakage. The number
of retrieved instances 𝐾 is set to 5, the sample-aware inter-modal
prompt length 𝑏 is set to 2, and the insertion position 𝑙 is set to 1.
We use the AdamW [24] optimizer with a learning rate of 1 × 10−3
and weight decay of 5 × 10−5. All experiments are conducted on a
system equipped with an Intel(R) Core(TM) i7-13700KF processor,
a RTX 3090 GPU, and 128 GB of system RAM.

4.2 Overall Performance
To verify the superiority of our proposed framework REDEEM in
tackling modality-missing problems, we compare it with 11 com-
petitive baseline models across three datasets under a 70% missing
rate and the results are summarized in Table 1. From the results,
we have the following observations.

First, our proposed REDEEM consistently outperforms all the
competitive baseline models across three datasets under various
modality-missing scenarios. Notably, REDEEM achieves an aver-
age improvement of 9.68% on all three datasets across all met-
rics and missing cases. To further validate REDEEM’s superior-
ity, we compute the statistical differences between REDEEM and
the best-performing baseline by retraining both models five times.
The resulting 𝑝-values, all far below 0.05, confirm that REDEEM’s
improvement over the baselines is statistically significant. These

performance gains are attributed to the effectiveness of REDEEM’s
novel framework, which pioneers a retrieval-guided paradigm for
both missing modality recovery and prompt generation. The MSA
Retriever flexibly utilizes the current available modalities to search
for the most relevant instances for the target sample. The CMoE
Generator and the SAIM Prompter carefully leverage the retrieved
instances to recover the missing modality and generate the sample-
aware inter-modal prompts, significantly enhancing the MT’s ro-
bustness in tackling various modality-missing challenges.

Second, both cross-modal imputation andmodality invari-
ant learning baselines demonstrate a certain degree of capacity in
handling missing modalities. However, they consistently fall short
of the performance achieved by our proposed REDEEM framework
due to their inherent limitations. Specifically, modality invariant
learning methods employ dummy values to substitute missing data,
which introduces noise and results in unstable model performance.
Cross-modal imputation methods, on the other hand, directly gen-
erate the missing modality from available ones but fail to address
the fundamental modality gap in the reconstruction. In contrast,
REDEEM effectively addresses these limitations by introducing
the CMoE Generator, which recovers the missing modality via
a within-modal reconstruction, achieving superior performance
across diverse modality-missing scenarios.

Third, withinMT-based baselines, each approach demonstrates
advanced performance over the vanilla pre-trained MT, i.e., ViLT,
underscoring the effectiveness of designs in strengthening pre-
trained MTs against modality-missing challenges. For instance,
MAPs and MSPs adopt prompt-tuning to improve the ViLT’s ro-
bustness under missing situations. However, these methods remain
less effective than our REDEEM due to inherent drawbacks: (1) They
overlook the missing content recovery, similar to joint methods
that rely on masking values padding strategy. (2) Their sample-
agnostic, static prompts lack fine-grained guidance for individual
instances, especially when handling datasets that contain a mix
of modality-complete and -incomplete samples. Although RAGPT
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Table 3: Ablation study of the core components within RE-
DEEM under 70% text missing.

Module Variant MM-IMDb HateMemes Food101
F1-M AUROC ACC

REDEEM All 59.94 71.45 79.81
MSA

Retriever
Random 53.31 61.37 67.31

w/o Retriever 47.56 58.87 63.78

CMoE
Generator

Cross-modal 54.40 69.19 77.92
w/o Router 54.01 68.87 76.97

w/o Generator 52.64 61.37 72.87

SAIM
Prompter

Static Prompt 55.26 70.15 78.15
Intra-modal 54.62 69.49 77.55
w/o Prompter 54.18 69.02 76.62

makes an initial attempt to address the above limitations, its design
remains simplistic: it reconstructs missing modalities by merely
averaging the retrieved ones, which limits its ability to capture
modality-specific nuances. Furthermore, its reliance on intra-modal
prompts to guide theMTs, neglecting the crucial role of cross-modal
relationships under severe modality-missing conditions. Instead,
REDEEM proposes a MoE-based conditional generation paradigm,
which explicitly leverages the remaining modalities as conditions
to guide the fine-grained aggregation of the retrieved modality rep-
resentations. Furthermore, REDEEM designs the SAIM Prompter
that distills informative cross-modal patterns from the retrieved
instances, generating more informative dynamic prompts. These
prompts serve as few shots, which guide the MTs in understanding
the correspondence between text and image modalities, largely
enhancing the missing robustness of MTs.

4.3 Ablation Study
To investigate the contributions of REDEEM’s core components,
we conduct a comprehensive ablation study across all datasets. The
results under text missing case are reported at Table 3.

4.3.1 Effect of MSA Retriever. To validate the efficacy of the MSA
Retriever, we design two variant models: (1) Random: where in-
stances are randomly selected to replace the retrieved samples, and
(2) w/o Retriever: where the retriever is removed, and features
of retrieved instances are replaced with random values. In both
variants, the retrieved samples lack relevance to the target sample,
leading to a significant drop in performance. This decline highlights
the critical role of retrieval quality in enhancing the REDEEM ’s
overall effectiveness within this retrieval-guided framework.

4.3.2 Effect of CMoE Generator. To evaluate the efficacy of the
CMoE Generator, we design three variant models: (1)Cross-modal:
where the CMoE Generator is replaced with an encoder-decoder
based cross-modal generator, (2) w/o Router: where the Condi-
tional Soft Router (CSR) network is removed and the retrieved data
are simply averaged to impute the missing content, and (3) w/o
Generator: where the missing modalities are padded with masking
values. For the Cross-modal variant, we observe a decline in perfor-
mance, attributed to the modal heterogeneity issues during recon-
struction. Additionally, without the router’s weighting, irrelevant
or low-quality retrieved data may contribute noise, leading to inac-
curacies in the reconstructed modality and inferior performance.
Finally, in the w/o Generator variant, padding missing content with
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Figure 3: Sensitivity analysis of hyper-parameters 𝐾 under
text missing, image missing and both modalities missing
scenarios on the MM-IMDb and HateMemes datasets.

masking values results in a substantial performance drop, reflecting
the detrimental effect of masking noise on pre-trained MTs.

4.3.3 Effect of SAIM Prompter. To assess the efficacy of the SAIM
Prompter, we design three variant models: (1) Static Prompt:
where the static prompts are inserted into the MT, (2) Intra-modal:
where the prompts are generated by intra-modal attention between
the retrieved modalities and the same modalities from the target
instances, and (3) w/o Prompter: where the SAIM Prompter is re-
moved. Entirely removing the SAIM Prompter yields a substantial
performance drop, as MT lacks the necessary guidance to effectively
manage modality-missing scenarios without any prompt cues. By
contrast, the static and intra-modal prompt variants demonstrate
improved performance but still encounters a noticeable decline.
These two type of prompts provide suboptimal guidance, constrain-
ing MT’s capacity to handle severe modality-missing cases.

4.4 Hyper-Parameter Analysis
In this section, we perform a sensitivity analysis on the number of
retrieved instances 𝐾 on the MM-IMDb and HateMemes datasets,
and the results are shown in Figure 3. From the results, we obtain
the conclusion: Adding retrieved instances improves REDEEM ’s
performance. However, a large number of instances results in a
decline in performance due to the noise (i.e., the irrelevant samples).
The optimal performance is generally achieved with 𝐾 = 5.

4.5 Robustness to Varying Missing Rate
To evaluate the robustness of our proposed REDEEM framework
against varying degrees of data loss, we conduct experiments on
the HateMemes dataset under conditions of text missing and both
modalities missing at different missing rates. We compare REDEEM
with another two competitive MT-based baselines: MAPs and MSPs.
Figure 4(a) and (b) illustrate the performance of each model across
different missing rates, while Figure 4(c) and (d) present the per-
formance degradation relative to the complete modality for each
model at each missing rate. From Figure 4(a) and (b), we observe
that our proposed REDEEM consistently outperforms the base-
lines, MAPs, and MSPs, achieving the highest AUROC scores under
all missing rates in the text missing and both modalities missing
scenarios. Additionally, as shown in Figure 4(c) and (d), REDEEM
exhibits the smallest relative performance degradation compared to
the complete modality condition at each evaluated missing rate, un-
derscoring its superior modality-missing robustness. These results
confirm that REDEEM effectively utilizes contextual knowledge
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(a) Text Missing (b) Both Missing

(c) Text Missing (d) Both Missing

Figure 4: Robustness of REDEEM and baselines MAPs, MSPs
on the HateMemes dataset across various missing rate.
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Figure 5: Generalization analysis of REDEEM and baselines
on the HateMemes dataset under various training missing
rates and a 90% inference missing rate, in terms of AUROC.

from retrieved instances to mitigate the impact of missing content,
ensuring robust performance across varying degrees of missing.

4.6 Generalizability to Severe Missing Challenge
To analyze the generalizability of REDEEM, we conduct exper-
iments with varying missing rates in the training set (i.e., 10%,
20%, 30%, 40% and 50%) and evaluate their performance under a
90% missing rate test set. These experiments are performed on the
HateMemes dataset, comparing REDEEM against four competitive
baselines: MoMKE, AcMAE, MAPs and MSPs. The results for the
text missing are presented in Figure 5(a), while results for the both
modalities missing are shown in Figure 5(b).

From the results, we observe that as the missing rate in the train-
ing set increases, all models exhibit improved performance in the
test set. This trend indicates that a high rate of missing data during
training enhances the models’ ability to handle severe modality-
missing cases at inference phase. Notably, the MT-based models
(MAPs, MSPs, and REDEEM) demonstrate minimal performance
variation due to their reliance on a pre-trained, frozenMT backbone
with limited additional trainable parameters. This design reduces
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Figure 6: Presentation of retrieval results. The first target
instance is modality-complete, while the second and third
are text-only and image-only instances, respectively.

their sensitivity to training data variability, ensuring consistent
performance. Moreover, our REDEEM achieves the best missing
generalizability, attributed to its retrieval-guided paradigm which
incorporates expressive information from retrieved instances, sig-
nificantly enhancing the REDEEM’s ability to effectively generalize
on severe modality-missing scenarios.

4.7 Retrieval Quality Presentation
To evaluate the effectiveness of our proposed MSA Retriever, we
randomly select three target instances from the MM-IMDb and
Food101 datasets, along with their Top-1 retrieved samples. The
selected targets include one modality-complete instance and two
modality-incomplete instances. As visualized in Figure 6, the re-
trieved instances exhibit a strong semantic correlation with their
respective targets. These results highlight the high relevance of
the retrieved content, underscoring the MSA Retriever’s capability
to flexibly adapt its retrieval mechanism to the specific modality-
missing scenarios and identify the most relevant information.

4.8 T-SNE Visualization
4.8.1 Modality Recovery Visualization. Figure 7 illustrates the dis-
tribution of recovered text and image data and ground truth for
both cross-modal imputation baseline AcMAE and our proposed
REDEEM. To generate this visualization, we randomly select 500
samples from the test set of the HateMemes dataset and project
the features of these samples into a 2D space using t-SNE [35].
As shown in the Figure 7, the distribution of original and recov-
ered modalities imputed by REDEEM aligns closer compared to
AcMAE. This demonstrates that the Conditional MoE Generator
(CMoE Generator) within our proposed REDEEM effectively recon-
structs missing content while resolving the limitations (i.e., modal
heterogeneity [37]) inherent in the cross-modal generation process.
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(a) AcMAE Text Recovery (b) REDEEM Text Recovery

(c) AcMAE Image Recovery (d) REDEEM Image Recovery

Figure 7: Text and image data recovery visualization of Ac-
MAE and our REDEEM. Blue points indicate the ground truth
while red points represent the recovered data.

Western Sport Film-Noir

(a) REDEEM (b) MoMKE

(c) AcMAE (d) MSPs

Figure 8: T-SNE visualization of classification for REDEEM
and baselines MoMKE, AcMAE, and MSPs on the MM-IMDb
dataset under a 90% text missing.

4.8.2 Classification Visualization. Figure 8 shows the t-SNE visu-
alization of the embedding distributions of REDEEM and several
competitive baselines for three movie genres (Sport, Film-Noir, and
Western) from the MM-IMDb test set under a severe 90% text miss-
ing situation. These embeddings correspond to the output of the
final layer before classification. The baselines MoMKE, AcMAE, and
MSPs exhibit limited separation with features intertwined across
different labels. In contrast, the embeddings learned by our RE-
DEEM form more distinct clusters, demonstrating clearer and more
discriminative boundaries. This result highlights the effectiveness
of REDEEM in tackling severe modality-missing problems.
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Figure 9: Model scalability analysis on the HateMemes
dataset under various missing scenarios.

4.9 Model Scalability
To evaluate the scalability ability of our proposed model-agnostic
framework REDEEM, we also conducted experiments with addi-
tional popular multimodal transformer backbones. Specifically, we
utilized CLIP [31] and BLIP2 [20] as backbones on the HateMemes
dataset, considering three scenarios where 90% of the text modality,
image modality and both modalities are missing. In these experi-
ments, we firstly leverage retrieved instances to recover missing
content via the CMoE Generator and generates contextual prompts
through the SAIM Prompter to guide the backbones in addressing
challenges associated with missing modalities. Finally, we utilize
the image and text features from the last hidden layer of each
backbone and feed these features into a MLP-based predictor to
generate the classification result. The performance of the origi-
nal backbones and the improvements achieved by integrating the
core components of REDEEM are presented in Figure 9. The re-
sults demonstrate that all backbones benefit significantly from our
framework, with substantial performance improvements observed
in both missing modality scenarios. These findings highlight the
scalability of REDEEM across different MT backbones.

5 Conclusion
In this study, we introduced REDEEM, a novel retrieval-guided con-
ditional generative framework to address the challenge of modal-
ity missing. REDEEM dynamically selects the most relevant in-
stances for both modality-complete and -incomplete targets to
ensure robust retrieval regardless of the modality completeness
of the target instance. Leveraging the available modalities along-
side the retrieved instances, REDEEM effectively reconstructs the
missing content through within-modal reconstruction techniques.
By extracting informative cross-modal patterns from the retrieved
modality-complete instances, REDEEM generates sample-specific,
dynamic prompts to guide pre-trained MTs in handling severe
missing modality scenarios with greater precision. Extensive ex-
periments on three benchmarks demonstrated the superior per-
formance of our framework compared to existing methods. In the
future, we aim to apply REDEEM in important practical scenarios
(e.g., autonomous driving) to further validate its applicability.

6 Acknowledgments
This work was supported by National Natural Science Foundation
of China (Grant No.62176043, No.62072077, and No.U22A2097).



KDD ’25, August 3–7, 2025, Toronto, ON, Canada Jian Lang et al.

References
[1] Gustavo Aguilar, Viktor Rozgic, WeiranWang, and ChaoWang. 2019. Multimodal

and Multi-view Models for Emotion Recognition. In Proceedings of the Annual
Meeting of the Association for Computational Linguistics (ACL). 991–1002.

[2] John Arevalo, Thamar Solorio, Manuel Montes-y Gómez, and Fabio A González.
2017. Gated multimodal units for information fusion. arXiv preprint
arXiv:1702.01992 (2017).

[3] Lei Cai, Zhengyang Wang, Hongyang Gao, Dinggang Shen, and Shuiwang Ji.
2018. Deep adversarial learning for multi-modality missing data completion. In
Proceedings of the ACM SIGKDD Conference on Knowledge Discovery and Data
Mining (KDD). 1158–1166.

[4] Tong Chen, Danny Wang, Xurong Liang, Marten Risius, Gianluca Demartini, and
Hongzhi Yin. 2024. Hate speech detection with generalizable target-aware fair-
ness. In Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery
and Data Mining. 365–375.

[5] Shizhe Diao, Pengcheng Wang, Yong Lin, Rui Pan, Xiang Liu, and Tong Zhang.
2024. Active prompting with chain-of-thought for large language models. In
Proceedings of the Annual Meeting of the Association for Computational Linguistics
(ACL). 1330–1350.

[6] David Eigen, Marc’Aurelio Ranzato, and Ilya Sutskever. 2013. Learning factored
representations in a deep mixture of experts. In International Conference on
Learning Representations (ICLR).

[7] William Fedus, Barret Zoph, and Noam Shazeer. 2022. Switch transformers:
Scaling to trillion parameter models with simple and efficient sparsity. Journal
of Machine Learning Research 23, 120 (2022), 1–39.

[8] Yan Gao, Tong Xu, and Enhong Chen. 2024. Are Mixture-of-Modality-Experts
Transformers Robust to Missing Modality During Training and Inferring?. In
International Conference on Intelligent Information Processing (ICIIP). Springer,
157–172.

[9] Zixian Gao, Disen Hu, Xun Jiang, Huimin Lu, Heng Tao Shen, and Xing Xu. [n. d.].
Enhanced Experts with Uncertainty-Aware Routing for Multimodal Sentiment
Analysis. In Proceedings of the ACM International Conference on Multimedia (MM).

[10] Ahmet Iscen, Mathilde Caron, Alireza Fathi, and Cordelia Schmid. [n. d.].
Retrieval-Enhanced Contrastive Vision-Text Models. In The Twelfth International
Conference on Learning Representations.

[11] Robert A Jacobs, Michael I Jordan, Steven J Nowlan, and Geoffrey E Hinton. 1991.
Adaptive mixtures of local experts. Neural Computation 3, 1 (1991), 79–87.

[12] Jaehyuk Jang, Yooseung Wang, and Changick Kim. 2024. Towards Robust Multi-
modal Prompting with Missing Modalities. In IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP). IEEE, 8070–8074.

[13] Congyun Jin, Ming Zhang, Weixiao Ma, Yujiao Li, YingboWang, Yabo Jia, Yuliang
Du, Tao Sun, HaowenWang, Cong Fan, et al. 2024. RJUA-MedDQA: AMultimodal
Benchmark for Medical Document Question Answering and Clinical Reasoning.
In Proceedings of the ACM SIGKDD Conference on Knowledge Discovery and Data
Mining (KDD). 5218–5229.

[14] Amin Karimi Monsefi, Payam Karisani, Mengxi Zhou, Stacey Choi, Nathan Doble,
Heng Ji, Srinivasan Parthasarathy, and Rajiv Ramnath. 2024. Masked LoGoNet:
Fast and Accurate 3D Image Analysis for Medical Domain. In Proceedings of
the ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD).
1348–1359.

[15] Douwe Kiela, Hamed Firooz, Aravind Mohan, Vedanuj Goswami, Amanpreet
Singh, Pratik Ringshia, and Davide Testuggine. 2020. The hateful memes chal-
lenge: Detecting hate speech in multimodal memes. Advances in Neural Informa-
tion Processing Systems (Neurips) 33 (2020), 2611–2624.

[16] Wonjae Kim, Bokyung Son, and Ildoo Kim. 2021. Vilt: Vision-and-language trans-
former without convolution or region supervision. In International Conference on
Machine Learning (ICML). PMLR, 5583–5594.

[17] Jian Lang, Zhangtao Cheng, Ting Zhong, and Fan Zhou. 2025. Retrieval-
Augmented Dynamic Prompt Tuning for Incomplete Multimodal Learning. In
Proceedings of the AAAI Conference on Artificial Intelligence (AAAI).

[18] Yi-Lun Lee, Yi-Hsuan Tsai, Wei-Chen Chiu, and Chen-Yu Lee. 2023. Multimodal
prompting with missing modalities for visual recognition. In IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR). 14943–14952.

[19] Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, Dehao Chen, Orhan Firat,
Yanping Huang, Maxim Krikun, Noam Shazeer, and Zhifeng Chen. 2020. GShard:
Scaling Giant Models with Conditional Computation and Automatic Sharding.
In International Conference on Learning Representations (ICLR).

[20] Junnan Li, Dongxu Li, Silvio Savarese, and StevenHoi. 2023. Blip-2: Bootstrapping
language-image pre-training with frozen image encoders and large language
models. In International Conference on Machine Learning (ICML). PMLR, 19730–
19742.

[21] Mingcheng Li, Dingkang Yang, Xiao Zhao, ShuaibingWang, YanWang, Kun Yang,
Mingyang Sun, Dongliang Kou, Ziyun Qian, and Lihua Zhang. 2024. Correlation-
Decoupled Knowledge Distillation for Multimodal Sentiment Analysis with In-
complete Modalities. In IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR). 12458–12468.

[22] Rongqing Li, Changsheng Li, Yuhang Li, Hanjie Li, Yi Chen, Ye Yuan, and Guoren
Wang. 2024. Itpnet: Towards instantaneous trajectory prediction for autonomous

driving. In Proceedings of the ACM SIGKDD Conference on Knowledge Discovery
and Data Mining (KDD). 1643–1654.

[23] Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, and
Graham Neubig. 2023. Pre-train, prompt, and predict: A systematic survey of
prompting methods in natural language processing. Comput. Surveys 55, 9 (2023),
1–35.

[24] Ilya Loshchilov and Frank Hutter. 2018. Decoupled weight decay regularization.
In International Conference on Learning Representations (ICLR).

[25] Mengmeng Ma, Jian Ren, Long Zhao, Davide Testuggine, and Xi Peng. 2022. Are
multimodal transformers robust to missing modality?. In IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR). 18177–18186.

[26] Mengmeng Ma, Jian Ren, Long Zhao, Sergey Tulyakov, Cathy Wu, and Xi Peng.
2021. Smil: Multimodal learning with severely missing modality. In Proceedings
of the AAAI Conference on Artificial Intelligence (AAAI), Vol. 35. 2302–2310.

[27] Basil Mustafa, Carlos Riquelme, Joan Puigcerver, Rodolphe Jenatton, and Neil
Houlsby. 2022. Multimodal contrastive learning with limoe: the language-image
mixture of experts. Advances in Neural Information Processing Systems (Neurips)
35 (2022), 9564–9576.

[28] Keon-Hee Park, Kyungwoo Song, and Gyeong-Moon Park. 2024. Pre-trained
Vision and Language Transformers Are Few-Shot Incremental Learners. In
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 23881–
23890.

[29] Srinivas Parthasarathy and Shiva Sundaram. 2020. Training strategies to han-
dle missing modalities for audio-visual expression recognition. In Companion
Publication of the International Conference on Multimodal Interaction. 400–404.

[30] Hai Pham, Paul Pu Liang, Thomas Manzini, Louis-Philippe Morency, and Barn-
abás Póczos. 2019. Found in translation: Learning robust joint representations
by cyclic translations between modalities. In Proceedings of the AAAI Conference
on Artificial Intelligence (AAAI), Vol. 33. 6892–6899.

[31] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh,
Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark,
et al. 2021. Learning transferable visual models from natural language supervision.
In International Conference on Machine Learning (ICML). PMLR, 8748–8763.

[32] Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le,
Geoffrey Hinton, and Jeff Dean. 2016. Outrageously Large Neural Networks: The
Sparsely-Gated Mixture-of-Experts Layer. In International Conference on Learning
Representations (ICLR).

[33] Sheng Shen, Zhewei Yao, Chunyuan Li, Trevor Darrell, Kurt Keutzer, and Yuxiong
He. 2023. Scaling Vision-Language Models with Sparse Mixture of Experts. In
Proceedings of the Conference on Empirical Methods in Natural Language Processing
(EMNLP). 11329–11344.

[34] Qian Sun, Le Zhang, Huan Yu, Weijia Zhang, Yu Mei, and Hui Xiong. 2023.
Hierarchical reinforcement learning for dynamic autonomous vehicle navigation
at intelligent intersections. In Proceedings of the ACM SIGKDD Conference on
Knowledge Discovery and Data Mining (KDD). 4852–4861.

[35] Laurens Van der Maaten and Geoffrey Hinton. 2008. Visualizing data using t-SNE.
Journal of Machine Learning Research 9, 11 (2008).

[36] Hu Wang, Yuanhong Chen, Congbo Ma, Jodie Avery, Louise Hull, and Gustavo
Carneiro. 2023. Multi-modal learning with missing modality via shared-specific
feature modelling. In IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition (CVPR). 15878–15887.

[37] Hao Wang, Shengda Luo, Guosheng Hu, and Jianguo Zhang. 2024. Gradient-
Guided Modality Decoupling for Missing-Modality Robustness. In Proceedings of
the AAAI Conference on Artificial Intelligence (AAAI), Vol. 38. 15483–15491.

[38] Xin Wang, Devinder Kumar, Nicolas Thome, Matthieu Cord, and Frederic Pre-
cioso. 2015. Recipe recognition with large multimodal food dataset. In IEEE
International Conference on Multimedia & Expo Workshops (ICME). IEEE, 1–6.

[39] Yuanzhi Wang, Yong Li, and Zhen Cui. 2023. Incomplete multimodality-diffused
emotion recognition. Advances in Neural Information Processing Systems 36 (2023),
17117–17128.

[40] A Waswani, N Shazeer, N Parmar, J Uszkoreit, L Jones, A Gomez, L Kaiser, and I
Polosukhin. 2017. Attention is all you need. In Advances in Neural Information
Processing Systems (Neurips).

[41] Sangmin Woo, Sumin Lee, Yeonju Park, Muhammad Adi Nugroho, and Changick
Kim. 2023. Towards good practices for missingmodality robust action recognition.
In Proceedings of the AAAI Conference on Artificial Intelligence (AAAI), Vol. 37.
2776–2784.

[42] Wenxin Xu, Hexin Jiang, et al. 2024. Leveraging Knowledge of Modality Experts
for Incomplete Multimodal Learning. In Proceedings of the ACM International
Conference on Multimedia (MM).

[43] Wenfang Yao, Kejing Yin, William K Cheung, Jia Liu, and Jing Qin. 2024. DrFuse:
Learning Disentangled Representation for Clinical Multi-Modal Fusion with
Missing Modality and Modal Inconsistency. In Proceedings of the AAAI Conference
on Artificial Intelligence (AAAI), Vol. 38. 16416–16424.

[44] Haofei Yu, Zhengyang Qi, Lawrence Jang, Russ Salakhutdinov, Louis-Philippe
Morency, and Paul Pu Liang. 2024. MMoE: Enhancing Multimodal Models with
Mixtures of Multimodal Interaction Experts. In Proceedings of the 2024 Conference
on Empirical Methods in Natural Language Processing. 10006–10030.



REDEEM: Retrieval-Guided Conditional Generation for Severely Modality Missing Learning KDD ’25, August 3–7, 2025, Toronto, ON, Canada

[45] Ziqi Yuan, Wei Li, Hua Xu, and Wenmeng Yu. 2021. Transformer-based feature
reconstruction network for robust multimodal sentiment analysis. In Proceedings
of the ACM International Conference on Multimedia (MM). 4400–4407.

[46] Yaohua Zha, Jinpeng Wang, Tao Dai, Bin Chen, Zhi Wang, and Shu-Tao Xia. 2023.
Instance-aware dynamic prompt tuning for pre-trained point cloud models. In
Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV).
14161–14170.

[47] Ziqin Zhou, Hai-Ming Xu, Yangyang Shu, and Lingqiao Liu. 2024. Unlocking
the Potential of Pre-trained Vision Transformers for Few-Shot Semantic Segmen-
tation through Relationship Descriptors. In IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR). 3817–3827.

[48] Junyou Zhu, ChaoGao, Ze Yin, Xianghua Li, and Jürgen Kurths. 2024. Propagation
Structure-Aware Graph Transformer for Robust and Interpretable Fake News

Detection. In Proceedings of the ACM SIGKDD Conference on Knowledge Discovery
and Data Mining (KDD). 4652–4663.

[49] Zheng Zhu, Xiaofeng Wang, Wangbo Zhao, Chen Min, Nianchen Deng, Min
Dou, Yuqi Wang, Botian Shi, Kai Wang, Chi Zhang, Yang You, Zhaoxiang Zhang,
Dawei Zhao, Liang Xiao, Jian Zhao, Jiwen Lu, and Guan Huang. 2024. Is Sora
a World Simulator? A Comprehensive Survey on General World Models and
Beyond. arXiv abs/2405.03520 (2024).

[50] Haolin Zuo, Rui Liu, Jinming Zhao, Guanglai Gao, and Haizhou Li. 2023. Ex-
ploiting modality-invariant feature for robust multimodal emotion recognition
with missing modalities. In IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP). IEEE, 1–5.



REDEEM: Retrieval-Guided Conditional Generation for Severely Modality Missing Learning KDD ’25, August 3–7, 2025, Toronto, ON, Canada

A Detailed Experimental Settings
In this section, we provide detailed descriptions about the datasets,
baselines, and implementation.

A.1 Datasets
Following prior works [12, 18], we evaluate our REDEEM across
three diverse multimodal downstream datasets: MM-IMDb [2],
HateMemes [15], and Food101 [38]. Below, we provide detailed
descriptions of each dataset.
• MM-IMDb is a multimodal dataset developed for movie genre
classification, incorporating twomodalities: images (movie posters)
and text (plot summaries). Each movie may belong to multiple
genres, making it a multi-label binary classification task.

• HateMemes is a benchmark dataset for identifying hate in
memes by leveraging both image and text modalities. By in-
troducing challenging samples, termed “benign confounders”, it
makes unimodal models more likely to fail, while multimodal
approaches are more likely to make correct predictions.

• Food101 is a large-scale multimodal dataset curated for the
multi-class classification task of 101 food categories. This dataset
uniquely pairs noisy image and text data across a diverse range of
food categories. Collected via Google Image Search, the dataset in-
troduces real-world noise and variability, offering both challenges
and opportunities for developing robust multimodal models in
food recognition.

A.2 Baselines
To evaluate the efficacy of REDEEM, we compare it with 11 com-
petitive baseline models, which can be classified into three distinct
groups: (1) Modality invariant learning methods, (2) Cross-modal
imputation methods, and (3) MT-based methods. Below, we provide
detailed descriptions of each baseline.
(1) Modality invariant learning methods:
• IF-MMIN [50] incorporates invariant features into cross-modality
imagination, reducing modality gaps and improving the robust-
ness of joint multimodal representations.

• ShaSpec [36] tackles the missing modality problem by learning
shared and specific features from the available inputs. It further
incorporates auxiliary tasks, including distribution alignment
and domain classification, to strengthen feature representations.

• DrFuse [43] addresses missing modality challenges by disentan-
gling shared andmodality-specific features. It then effectively pre-
serves crucial shared information from the available modalities,
enhancing robustness in scenarios with incomplete modalities.

• CorrKD [21] is a correlation-decoupled knowledge distillation
framework designed to enhance the learning of joint represen-
tations under incomplete modality situations by refining and
transferring cross-sample, cross-category, and cross-target corre-
lations.

• MoMKE [42] utilizes a MoE based framework to dynamically
integrate unimodal and joint representations via a Soft Router,

enabling robust modality representation under modality missing
conditions.

(2) Cross-modal imputation methods:
• SMIL [26] develops a Bayesian meta-learning based solution to
tackle the modality missing problems and utilizes the remaining
modalities to reconstruct the missing modalities.

• TFR-Net [45] leverages attention-based extractors to capture
intra-modal and inter-modal robust representations for generat-
ing missing modality features.

• AcMAE [41] adopts missing modality predictive coding by ran-
domly dropping modality features and reconstructing them using
the remaining features via an autoencoder network.

(3) MT-based methods:
• MAPs [18] introduces missing-aware prompts, which are in-
serted into different layers of multimodal transformers to effec-
tively address missing modality challenges.

• MSPs [12] constructs modality-specific prompts to enhance the
robustness of pre-trained multimodal transformers under various
modality missing scenarios.

• RAGPT [17] leverage a multimodal retrieval to simply recover
the missing content via average the retrieved modalities. It also
constructs intra-modal prompts with retrieved instances to guide
the pre-trained multimodal transformers in tackling the missing
modalities.

A.3 Implementation Details
A.3.1 Multimodal Transformer Backbone. In our experiments, we
follow the prior works to adopt ViLT [16] as our multimodal trans-
former backbone.

A.3.2 Details of Memory Bank Construction. In this work, themem-
ory bankM is composed of only the instances from the training
sets, thereby preventing data leakage during inference. Specifically,
we utilize the pre-trained ViLT to extract embeddings for both text
and image modalities from the training and validation instances.
These embeddings are then employed to build the memory bank.

A.3.3 Training Configuration. During the training, to avoid heavy
overhead, all parameters in the ViLT remain frozen, and only the
proposed CMoE Generator, SAIM Prompter, and downstream task-
specific parameters (e.g., pooler and classifier) are optimized. The
number of retrieved instances 𝐾 is set to 5, the context-aware
dynamic prompt length 𝑏 is set to 2, and the insertion position 𝑙 is
set to 1. We use the AdamW [24] optimizer with a learning rate of
1×10−3 and weight decay of 5×10−5. Both the baseline models and
our REDEEM are trained and tested five times, with the average
values reported as the final results. For fair comparisons, we strictly
follow the parameter configurations specified in the original papers
of the baseline methods.

A.3.4 Implementation Environment. All experiments are conducted
on a system equipped with an Intel(R) Core(TM) i7-13700KF pro-
cessor, an NVIDIA GeForce RTX 3090 GPU with 24 GB of VRAM,
and 128 GB of system RAM.
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