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Abstract—Detecting fake news videos has emerged as a critical
task due to their profound implications in politics, finance, and
public health. However, existing methods often fail to distin-
guish real videos from their subtly manipulated counterparts,
resulting in suboptimal performance. To address this limitation,
we propose REAL, a novel model-agnostic REtrieval-Augmented
prototype-aLignment framework. REAL first introduces an
LLM-driven video retriever to identify contextually relevant
samples for a given target video. Subsequently, a dual-prototype
aligner is carefully developed to model two distinct prototypes:
one representing authentic patterns from retrieved real news
videos and the other encapsulating manipulation-specific patterns
from fake samples. By aligning the target video’s representations
with its ground-truth prototype while distancing them from
the opposing prototype, the aligner captures manipulation-aware
representations capable of detecting even subtle video manipula-
tions. Finally, these enriched representations are seamlessly inte-
grated into existing detection models in a plug-and-play manner.
Extensive experiments on three benchmarks demonstrate that
REAL largely enhances the detection ability of existing methods.
The code and data for reproducing the results are available at
https://github.com/Jian-Lang/REAL.

Index Terms—fake news video detection, retrieval augmenta-
tion, prototype alignment

I. INTRODUCTION

Online video-sharing platforms like TikTok and YouTube
Shorts have become increasingly popular on mobile internet
and attracted billions of monthly active users. However, the
prevalence of news consumption on these video platforms also
boosts the rapid spread of malicious content (e.g., fake news)
in videos, posing real-world threats to politics, finance, and
public health [1], [2]. Therefore, developing effective methods
for Fake News Video Detection (FNVD) is urgent to mitigate
their negative impact.

Current methods in FNVD primarily focus on modelling
multimodal content and capturing cross-modal correlations to
assess video authenticity [1]–[4]. Despite their progress, exist-
ing works struggle to effectively identify the nuanced differ-
ences between real news videos and their subtly manipulated
fake counterparts, incurring limited detection performance.

Previous studies [2], [4] have shown that most fake news
videos are commonly created by manipulating real news
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Biden Floors Electric Ford
Truck in Test Drive.  This

sucker’s quick!  OK, 
Here we go. You ready?

Mr. President. This sucker's
quick! Not even driving! what
a joke. I'm sure this will be ...

Real News Video Fake News Video

Fig. 1. The left panel shows a real news video of Joe Biden test-driving
an electric Ford truck. The right panel illustrates a manipulated version with
altered on-screen text and audio, falsely suggesting he was pretending to drive.

videos, rather than fabricating entirely new content. To ef-
fectively deceive viewers, creators of fake news videos often
introduce subtle yet crucial alterations to the original content
in real videos, such as distorting the narrative, or editing visual,
textual, and audio elements to propagate misinformation [4].
For instance, as shown in Figure 1, the manipulated fake news
video on the right introduces only minute modifications to
the on-screen text and audio, while retaining nearly identical
vision content to the original real version on the left. Due to
the high similarity between these two videos, the identification
of reliable and distinguishing features becomes particularly
challenging, leading existing detection methods to incorrectly
classify them as the same category.

To address these challenges, we draw inspiration from
human cognitive processes [5]: When confronted with ambigu-
ous or difficult-to-distinguish instances, humans instinctively
refer to examples from known categories that are closely
related to the target. By contrasting the target with these
examples, subtle distinguishing patterns—often imperceptible
in isolation—become more apparent and actionable. Building
upon this intuition, we propose REAL, a novel model-agnostic
REtrieval-Augmented prototype aLignment framework. Un-
like existing methods that analyze videos in isolation, REAL
leverages semantically target-relevant real and fake reference
samples to guide the learning of manipulation-aware represen-
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tations for the target videos. These enhanced representations
seamlessly integrate with existing FNVD methods, enabling
them to distinguish authentic news videos from their altered
fake counterparts.

Inspired by the exceptional ability of large language models
(LLMs) [6] in comprehending and organizing information, we
propose an LLM-driven video retriever to identify semantically
relevant examples from two categories (i.e., real and fake) for
a given target video. Specifically, the retriever leverages the
LLMs to effectively integrate information from audio, text, and
visual modalities of the target video into a unified, text-centric
representation, which serves as a powerful query for retrieval.
The retrieved real and fake samples form contextually relevant
reference sets, facilitating the learning of manipulation-aware
representations for the target video.

Building on the retrieved samples, we introduce the dual-
prototype aligner to refine the target video’s features into
manipulation-aware representations. Specifically, the aligner
leverages a graph attention network [7] to model two distinct
prototypes—one for real and one for fake categories—based
on the retrieved instances. These prototypes act as “reference
points”, reflecting authentic patterns in real news videos and
manipulation-specific patterns in fake ones. By aligning the
target videos with their ground-truth prototypes while distanc-
ing them from the opposing prototypes, the aligner produces
manipulation-aware representations that highlight subtle dis-
crepancies in real news videos and manipulated counterparts.
Our contributions are summarized as follows:
• We propose a novel model-agnostic REtrieval-Augmented

prototype aLignment framework (REAL) that generates
manipulation-aware representations to enhance existing
methods in detecting fake news videos.

• We introduce a fresh LLM-driven video retriever, which
provides contextually relevant reference sets to guide repre-
sentation enhancement for the target video.

• We design a new dual-prototype aligner, which models real
and fake prototypes to amplify manipulation-specific signals
in altered fake videos representations and enhance authentic
characteristics in original real ones.
Extensive experiments on three real-world video datasets

demonstrate the excellent capability of REAL, which enhances
existing FNVD methods with an average performance im-
provement of 3.7%.

II. RELATED WORK

The Fake News Video Detection (FNVD) task involves
detecting fake news content by analyzing multimodal data
within videos, such as textual descriptions, visual content, and
audio information. Early detection methods primarily relied on
single-modal information to assess video authenticity [8]–[10].
However, due to the inherently multimodal nature of videos,
where text, vision, and audio modalities provide complemen-
tary aspects of information to describe the content, single-
modal models are inadequate for accurate video-based detec-
tion [11]. To address this problem, multimodal learning in the
FNVD has garnered broad attention in both the research and

industry communities [1]–[4], [12]. SV-FEND [1] captures the
multimodal correlations within videos and utilizes the social
context to assist fake news detection. NEED [4] integrated both
explicit and implicit neighborhood relationships to enhance
detection performance.

Despite their advancements, existing FNVD methods strug-
gle to identify the subtle differences between real and manip-
ulated fake videos, leading to severe misclassification in real-
world scenarios. To address this challenge, our REAL pioneers
a retrieval-augmented prototype alignment strategy to gener-
ate manipulation-aware representations. These representations
exhibit enhanced distinctiveness between original videos and
their manipulated variants and can be seamlessly incorporated
into existing detection models to boost their performance.

III. METHODOLOGY

In this section, we describe the proposed REAL in detail.
The overall framework of REAL is illustrated in Figure 2.
We first provide the preliminaries for the FNVD. The sub-
sequent subsections present in-depth descriptions of the key
components of REAL: the LLM-Driven Video Retriever and
the Dual-Prototype Aligner. Finally, we describe how REAL
can be seamlessly integrated into existing FNVD models in a
plug-and-play manner.

A. Preliminary

Problem Statement Let S represent a video collected from
online video platforms. The video S is composed of text,
vision, and audio modalities, denoted as S = {T ,V,A}. The
objective of FNVD is to detect whether the video S is fake
or real by considering its modalities T , V , and A. Notably,
since REAL is a retrieval-guided framework, we refer to S as
the target video in the following discussion to ensure precise
and clear descriptions.
Feature Extraction Prior FNVD methods adopt various meth-
ods to extract modality features. To simplify the discussion,
we define the modality-specific features of video S extracted
by existing methods as Em, m ∈ {t, v, a} for text, vision, and
audio modalities, respectively.

B. LLM-Driven Video Retriever

To search for the most semantically relevant video samples
for the target video S, we design an LLM-Driven Video
Retriever (LDV Retriever), which introduces the exceptional
ability of LLMs in information comprehension and organiza-
tion. The retriever unifies audio, text, and visual modalities
from the target video into a shared, text-centric representa-
tion that comprehensively represents the video content. This
unified representation ensures that information from all three
modalities is effectively interpreted and integrated, forming a
powerful query for video-to-video retrieval while addressing
the inherent heterogeneity between modalities.

Specifically, LDV Retriever first uniformly samples M
frames from the target video S and then employs the pre-
trained BLIP [13] to generate captions for each frame, thereby
transforming the visual information into textual form, denoted
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Fig. 2. Overall framework of our proposed REAL. (1) LLM-Driven Video Retriever searches for the most relevant real and fake news videos corresponding
to the target real video. (2) Dual-Prototype Aligner leverages the retrieved instances to construct prototypes for real and fake videos using a Graph Attention
Network (GAT), aligning the target video representation with its ground-truth prototype while distancing it from the opposing prototype.

as Vt = {V1
t ,V2

t , · · · ,VM
t }. Second, LDV Retriever leverages

Whisper [14] to convert the audio of S into textual form,
denoted as At. Subsequently, LDV Retriever utilizes the LLM
to integrate information from all three modalities to form the
text-centric query R for retrieval:

R = L(Vt, T ,At,P), (1)

where L(·) represents the LLM, T is the text modality of S
(e.g., a video’s title) and P is the prompt fed into the LLM,
with a concise version shown as:

“Suppose you are a multimodal information organizing
expert. Your task is to summarize the information from the
visual, textual, and audio content of the given video: [Vt],
[T ], and [At]. Provide a concise and accurate description
that effectively represents the video’s content.”

Based on the query R, LDV Retriever performs the video-
to-video retrieval to retrieve the semantically relevant video
samples for the target video S:

Sr = Top-K
b∈M

(
Ψ(R)

⊤
Ψ(Rb)

∥Ψ(R)∥∥Ψ(Rb)∥
), (2)

where Ψ(·) represents the pre-trained text encoder (i.e.,
GTE [15]), M is the memory bank that stores a diverse set of
videos, and Sr = {Sr

i }Ki=1 denotes the retrieved top-K videos.
We obtain the top-Kf retrieved fake video samples and top-
Kr real ones, denoted as Srf and Srr, respectively. These
retrieved videos serve as contextually relevant reference sets,
guiding the learning of manipulation-aware representation for
the target video S.

C. Dual-Prototype Aligner

To generate manipulation-aware representation for S , we
propose the Dual-Prototype Aligner (DP Aligner), which
models both real and fake prototypes and performs prototype
alignment learning based on the retrieved video samples.

1) Graph-based Dual-Prototype Generation: To provide
expressive prototypes as reference points for the target video
S, we introduce a Graph Attention Network (GAT) [7] to
model authentic patterns in retrieved real news videos and
manipulation-specific patterns in fake ones, respectively.

Specifically, given the retrieved fake video set Srf =
{Srf

i }Ki=1, DP Aligner constructs a contextual information
graph Gf = (Vf , Ef ), where each node vi ∈ Vf represents
the modality-specific feature Ef,m

i of the fake video sample
Srf
i , where m ∈ {t, v, a}. Each edge eij ∈ Ef reflects pairwise

relationships between node i and j based on feature semantic
similarity. DP Aligner computes the edge weight eij between
two nodes vi and vj and normalizes the weight:

eij = LeakyReLU
(
a⊤ [Wvi,Wvj ]

)
, (3)

αij = Softmax(eij) =
exp(eij)∑

k∈N i exp(eik)
, (4)

where W and a are trainable parameters, Ni denotes the
set of neighbors of node vi in the graph. With the attention
weights αij , the updated representation v̂i for each node vi

is computed as a weighted aggregation of its neighbors:

v̂i = σ(
∑
j∈Ni

αij ·Wvj), (5)

where σ(·) is a non-linear activation function (e.g., ReLU).
After graph-based aggregation, the embeddings of all nodes
in Gf are pooled to form the fake prototype Pf,m:

Pf,m =
1

Kf

Kf∑
i=1

v̂i, (6)

Similarly, the real prototype Pr,m can be obtained via the
same process.

2) Prototype Alignment Learning: For the target video
S, DP Aligner first feeds its modality-specific feature Em

into the feed-forward network (FFN) to obtain the original
manipulation-aware representation:

Mm = FFN(Em) = W2 · σ(W1E
m + b1) + b2. (7)

where Mm,m ∈ {t, v, a} is the manipulation-aware represen-
tation. Next, the dual-prototype alignment loss is defined to
align the Mm

i of a batch of N target videos B = {Si}Ni=1

to their ground-truth category prototypes and distance the
representation from the opposing prototypes:

Lp =

N∑
i=1

(
∑

m∈{t,v,a}

(
∥∥∥Mm

i −Pl,m
i

∥∥∥+ |Mm
i

⊤
Pn,m

i |
∥Mm

i ∥∥Pn,m
i ∥

)), (8)



TABLE 2
PERFORMANCE COMPARISON OF BASE MODELS WITH AND WITHOUT OUR REAL. THE BETTER RESULTS IN EACH GROUP USING THE SAME BASE MODEL
ARE IN RED BOLD, AND THE RELATIVE GAIN (%) IS CALCULATED. THE HIGHER VALUES OF ACC, M-F1, AND M-P INDICATE BETTER PERFORMANCE.

Dataset FakeSV FakeTT FVC

Model ACC M-F1 M-P ACC M-F1 M-P ACC M-F1 M-P

BERT 76.88 - 76.40 - 76.78 - 63.54 - 63.01 - 65.33 - 67.17 - 65.08 - 66.07 -
+ REAL 79.81 3.8↑ 79.52 4.1↑ 79.52 3.6↑ 69.23 8.9↑ 67.16 6.6↑ 66.91 2.4↑ 69.75 3.8↑ 68.04 4.5↑ 69.11 4.6↑
ViT 70.84 - 70.84 - 72.09 - 64.21 - 63.89 - 67.14 - 84.00 - 84.09 - 84.29 -
+ REAL 76.19 7.6↑ 75.95 7.2↑ 75.87 5.2↑ 71.90 12.0↑ 70.51 10.4↑ 70.46 5.0↑ 85.31 1.6↑ 85.22 1.3↑ 85.20 1.1↑
AST 68.00 - 67.12 - 67.54 - 60.87 - 60.73 - 64.02 - 76.24 - 75.09 - 75.81 -
+ REAL 70.06 3.0↑ 69.34 3.3↑ 69.58 3.0↑ 62.87 3.3↑ 62.39 2.7↑ 65.26 1.9↑ 77.15 1.2↑ 76.08 1.3↑ 77.43 2.1↑

FANVM 75.70 - 75.18 - 75.64 - 72.24 - 70.53 - 70.23 - 81.96 - 81.62 - 81.68 -
+ REAL 79.70 5.3↑ 79.13 5.3↑ 79.74 5.4↑ 74.24 2.8↑ 72.66 3.0↑ 72.27 2.9↑ 85.17 3.9↑ 84.67 3.7↑ 85.39 4.5↑
SV-FEND 77.22 - 76.46 - 77.46 - 71.57 - 70.30 - 70.31 - 89.16 - 89.02 - 88.88 -
+ REAL 80.07 3.7↑ 79.67 4.2↑ 79.85 3.1↑ 74.58 4.2↑ 72.56 3.2↑ 72.05 2.5↑ 91.10 2.2↑ 91.01 2.2↑ 90.87 2.2↑
NEED 82.84 - 82.60 - 83.56 - 70.23 - 67.12 - 66.84 - 90.77 - 90.53 - 90.83 -
+ REAL 84.42 1.9↑ 84.00 1.7↑ 84.76 1.4↑ 72.57 3.3↑ 69.19 3.1↑ 69.10 3.4↑ 91.98 1.3↑ 91.82 1.4↑ 91.84 1.1↑
FakingRec 84.87 - 84.09 - 86.69 - 78.59 - 77.23 - 76.65 - 91.52 - 91.37 - 91.33 -
+ REAL 85.93 1.2↑ 85.22 1.3↑ 87.53 1.0↑ 79.62 1.3↑ 78.32 1.4↑ 77.84 1.6↑ 92.67 1.3↑ 92.33 1.1↑ 92.11 0.9↑

TABLE 1
STATISTICS OF THREE DATASETS.

Dataset Language # Rumor # Truth # Total Duration (s)

FakeSV Chinese 1,810 1,814 3,624 39.88
FakeTT English 1,172 819 1,991 47.69

FVC English (Mainly) 1,633 1,131 2,764 87.83

where Pl,m
i represents the ground-truth category prototype of

Si and Pn,m
i is the opposite prototype of Si. By minimizing

the distance between the target video Si and the ground-
truth category prototype, while simultaneously reducing the
cosine similarity between Si and its opposite prototype, the
DP Aligner yields the final manipulation-aware representation.

D. Prediction

We integrate the manipulation-aware representation Mm

into existing FNVD methods in a plug-and-play manner (i.e.,
Residual Connection [16]) to make more precise prediction:

ŷ = Predictor(F(Et +Mt,Ev +Mv,Ea +Ma)), (9)

where ŷ is the predicted category for the target video S, F(·)
and Predictor(·) denote the multimodal fusion network and
the prediction network in various FNVD methods, respectively.

Subsequently, the Binary Cross-Entropy loss and the proto-
type loss are combined to optimize the model’s parameters:

Ltotal = α · (
N∑
i=1

Lcls(yi, ŷi)) + β · Lp, (10)

where yi is the label of Si, N denotes the batch size, and
α and β are parameters to balance the two types of loss. By
optimizing the combined loss, REAL improves the ability of
existing methods in FNVD.

IV. EXPERIMENTS

A. Experimental Settings

In this section, we provide a summary of the datasets,
baselines, evaluation metrics, and implementation details.

Datasets We conducted experiments on three real-world video
datasets: FakeSV [1], FakeTT [2], and FVC [17]. Table 1
provides the detailed statistics of three datasets. The splits for
each dataset are consistent with the prior works.
Baselines REAL can be extended to any FNVD methods to
enhance their prediction. To evaluate its universal efficacy,
we select 7 baseline detectors, which are categorized into
two groups: (1) Single Modal Detection Methods: BERT [8],
ViT [9], and AST [10]. (2) Multimodal Detection Methods:
FANVM [3], SV-FEND [1], NEED [4], and FakingRec [2].
For NEED, we implement it with the base model SV-FEND.
Evaluation Metrics Following prior studies [1], [2], we
employ three metrics to evaluate the performance: Accuracy
(ACC), Macro F1 score (M-F1), and Macro Precision (M-P).
Implementation Details During the retrieval process, we uti-
lize GPT-4o-mini [6] to organize the multimodal data and em-
ploy GTE [15] to generate the retrieval vectors. The memory
bank for each dataset is constructed using the corresponding
training set. For hyper-parameters, we select Kr and Kl from
the set {1, 3, 5, 7, 9}, while both α and β are fixed at 1.

B. Overall Performance

We evaluate the performance of the baseline models without
and with REAL in Table 2, and have following observations:

(O1) With the incorporation of REAL, all 7 baseline models
exhibit significant performance improvements, achieving gains
of 1.2–12% in terms of ACC. These results highlight the
effectiveness and versatility of REAL, which enhances the
discriminative capability of the baseline models in FNVD by
generating more distinctive and expressive representations.

(O2) REAL yields more pronounced improvements on un-
derperforming models. We hypothesize that this phenomenon
arises from the susceptibility of these models to misclassify
real news videos and their subtly altered counterparts. By
leveraging manipulation-aware representations, REAL miti-
gates this limitation and establishes a more robust lower bound
for detection performance in these underperformed methods.



TABLE III
ABLATION STUDY RESULTS OF CORE COMPONENTS WITHIN REAL.

Module Variant FakeSV FakeTT FVC

Acc M-F1 Acc M-F1 Acc M-F1

LDV
Retriever

Uni-modal 79.09 78.87 72.57 71.21 89.67 89.54
w/o LLM 78.96 78.52 73.24 71.26 89.37 89.24

w/o Retriever 78.59 77.87 70.23 69.23 88.37 88.24

DP
Aligner

w/o Real 78.88 78.38 72.57 71.54 89.79 89.70
w/o Fake 77.49 77.43 72.57 71.61 88.22 88.09

w/o Graph 78.22 77.71 69.23 68.07 88.07 87.96

REAL All 80.07 79.67 74.58 72.56 91.10 91.01
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Fig. 3. Hyper-parameter sensitivity analysis of Kr and Kf on three datasets.

C. Ablation Study

To assess the effectiveness of each core component in
REAL, we conduct an ablation study using the base model
SV-FEND, with the results presented in Table III.
Effect of LDV Retriever To assess the impact of the LDV
Retriever, we design three variants: (1) Uni-modal: replacing
the LDV Retriever with a uni-modal retriever that leverages
only textual information for retrieval, (2) w/o LLM: removing
the LLM within the LDV Retriever, and (3) w/o Retriever:
entirely discarding the LDV Retriever while using random
samples as substitutes for the retrieved instances. As shown
in Table III, the uni-modal variant results in a noticeable
performance degradation, which highlights the limitations of
using uni-modal information alone for accurate video-video
retrieval. When the LLM is removed, the performance also
drops significantly, demonstrating the powerful ability of the
LLM in summarizing and integrating information. Further-
more, replacing the LDV Retriever with random sampling
results in a significant performance decline, underscoring the
critical importance of high-quality retrieved instances.
Effect of DP Aligner To validate the effectiveness of the DP
Aligner, we design three variants: (1) w/o Real: removing
the real category prototype, (2) w/o Fake: removing the fake
category prototype, and (3) w/o Graph: replacing the GAT
mechanism by simply averaging the retrieved instances to
form the prototype. As reported in Table III, removing either
the real or fake prototype leads to a significant performance
drop, which underscores the critical role of each prototype
in guiding the learning of manipulation-aware representations.
Furthermore, eliminating the GAT mechanism and using a
simple averaging strategy also results in a notable decline in
performance. This highlights the pivotal role of the GAT in
dynamically aggregating information from retrieved instances.

TABLE IV
PRESENTATION OF THE RETRIEVAL QUALITY. SCORE: SIMILARITY

SCORE. RED TEXT HIGHLIGHTS SIMILAR CONTENT.

Target: Fake Top-1: Real Top-1: Fake

Vision

Audio January in Cal-
ifornia. And we
will reduce the
number of people
in the world.

We will reduce
the number of
people in the
world that cannot
afford medicines.

The first week we
will reduce the
number of people
in the world.

Text #World #Forum
#Economic

#worldeconomic-
forums

#world #freedo-
mofspeech

Score N/A 0.88 0.94

D. Hyper-Parameter Sensitivity Analysis

We conduct a sensitivity analysis on two key hyper-
parameters of REAL using the base model SV-FEND: the
number of retrieved real videos (Kr) and fake videos (Kf ). As
illustrated in Figure 3, we observe that incorporating retrieved
instances consistently improves performance. However, when
the number of retrieved instances becomes excessively large,
the performance begins to degrade. This decline is primarily
attributed to the introduction of noise, such as irrelevant
or low-quality samples, which weakens the quality of the
prototypes. Consequently, the optimal performance is achieved
when Kr = 5 and Kf = 7 across all three datasets.

E. Retrieval Quality Visualization

To further validate the effectiveness of the proposed LDV
Retriever, we randomly select a fake news video from the
FakeSV dataset and analyze its retrieved top-1 real and fake
news videos. As shown in Table IV, the retrieved real and fake
videos demonstrate high semantic relevance to the target video
across all modalities. This observation highlights the capabil-
ity of the LDV Retriever to accurately identify contextually
similar instances for the target video.

F. Further Analysis on Manipulation-Aware Representation

To further investigate the efficacy of manipulation-aware
representations in distinguishing real news videos from their
manipulated counterparts, we conduct a quantitative analysis
across different modalities. Specifically, we randomly select
50 video pairs from each of the FakeSV and FakeTT datasets,
where each pair comprises an authentic news video and its
manipulated version. For each pair, we calculate the feature
distance between the two videos in three modalities using both
the original feature space and the manipulation-aware feature
space on the base model SV-FEND. The average distances for
each modality are computed and summarized in Figure 4.
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Fig. 4. Feature distance between real news videos and their manipulated
versions on the FakeSV and FakeTT datasets.
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Fig. 5. T-SNE visualization of model SV-FEND and with the help of REAL.
Red points indicate fake news videos while blue points represent real ones.

From the results, we can draw the conclusion: in the
original feature space, the feature distances between real
and manipulated videos are relatively small, indicating lim-
ited discriminative power. In contrast, the manipulation-aware
representations exhibit significantly larger feature distances,
effectively amplifying the discrepancy between the real and
manipulated videos, and facilitating more precise detection.

G. Visualization

Figure 5 presents a t-SNE [18] visualization of the embed-
ding distributions for the two categories on the test set of the
FVC dataset. We visualize the output embeddings from the last
layer of the classifier in both the original base model SV-FEND
and SV-FEND enhanced with REAL. The visualization reveals
that the integration of REAL enables SV-FEND to generate
more discriminative representations, resulting in clearer class
boundaries compared to the original one.

V. CONCLUSION

In this work, we present REAL, a novel, model-agnostic
retrieval-augmented prototype alignment framework for en-
hancing the performance of existing methods for FNVD.
REAL introduces two key components: (1) an LLM-driven
video retriever that identifies the most semantically relevant
video instances for a given target video, and (2) a dual-
prototype aligner that constructs two distinct prototypes: one
modeling authentic patterns in retrieved real news videos
and another summarizing manipulation-specific characteristics
from fake samples. By aligning the target video with its
ground-truth prototype while distancing it from the opposing
prototype, REAL effectively captures manipulation-aware rep-
resentations, thereby enhancing the ability of existing FNVD

methods to differentiate real news videos from their manipu-
lated counterparts. Extensive experiments conducted on three
real-world video datasets validate the effectiveness of REAL.

ACKNOWLEDGMENTS

This work was supported by National Natural Science
Foundation of China (Grant No.62176043, No.62072077, and
No.U22A2097).

REFERENCES

[1] Peng Qi, Yuyan Bu, Juan Cao, Wei Ji, Ruihao Shui, Junbin Xiao, Dand-
ing Wang, and Tat-Seng Chua, “Fakesv: A multimodal benchmark with
rich social context for fake news detection on short video platforms,” in
Proceedings of the AAAI Conference on Artificial Intelligence (AAAI),
2023, vol. 37, pp. 14444–14452.

[2] Yuyan Bu, Qiang Sheng, Juan Cao, Peng Qi, Danding Wang, and
Jintao Li, “Fakingrecipe: Detecting fake news on short video platforms
from the perspective of creative process,” in Proceedings of the ACM
International Conference on Multimedia (MM), 2024, pp. 1351–1360.

[3] Hyewon Choi and Youngjoong Ko, “Using topic modeling and adver-
sarial neural networks for fake news video detection,” in Proceedings
of the ACM International Conference on Information and Knowledge
Management (CIKM), 2021, pp. 2950–2954.

[4] Peng Qi, Yuyang Zhao, Yufeng Shen, Wei Ji, Juan Cao, and Tat-Seng
Chua, “Two heads are better than one: Improving fake news video
detection by correlating with neighbors,” in Findings of the Association
for Computational Linguistics, 2023, pp. 11947–11959.

[5] Douglas R Hofstadter, Fluid concepts and creative analogies: Computer
models of the fundamental mechanisms of thought., Basic books, 1995.

[6] OpenAI, “Gpt-4 Technical Report,” arXiv, 2023.
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